3ème Sciences Série N°7

Exercice N° 1

- Soit $f(x) = \frac{1}{2}\cos(2x) \frac{\sqrt{3}}{2}\sin(2x) + 1$. Calculer: $f(-\frac{\pi}{12})$ et $f(\frac{\pi}{3})$.
- Montrer que pour tout $x \in \mathbb{R}$, on a $f(x) = \cos(2x + \frac{\pi}{3}) + 1$.
- $\overline{3}$ Résoudre dans $[0, \pi]$ l'équation : f(x) = 1.
- Soit la fonction g définie sur $]-\pi,\pi[$ par $:g(x)=\frac{\sin(2x+\frac{\pi}{3})}{f(x)}.$
 - (a) Déterminer le domaine de définition D de g.
 - **b** Montrer que pour tout $x \in D$ on a : $g(x) = \tan(x + \frac{\pi}{6})$.
 - **c** En déduire : $\tan(\frac{\pi}{12}) = 2 \sqrt{3}$

Exercice N° 2

Soit la fonction f définie par : $f(x) = \frac{2x^2 + bx + c}{ax - 2}$ avec b et c deux réels et a un réel non nul. On désigne par (C_f) sa courbe représentative dans un repère orthonormé $R = (O, \overrightarrow{i}, \overrightarrow{j})$.

- 1 Déterminer les réels a, b et c pour que :
 - * (C_f) admette la droite $(\Delta)x = 2$ comme asymptote.
 - * (C_f) admette la droite en A(1, -3) une tangente parallèle à l'axe des abscisses . Dans la suite en prend a = 1, b = -7 et c = 8.
- Écrire f(x) sous la forme $f(x) = \alpha x + \beta + \frac{\gamma}{x-2}$ ou α, β et γ sont des réels qu'on déterminera .
 - $\langle \mathbf{a} \rangle$ Étudier les variations de f.
 - b Préciser les asymptote de (C_f) .
 - C Montrer que le point I(2,1) est un centre de symétrie de (C_f)

Exercice N° 3

Le plan est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. On donne les points $A(1, \sqrt{3}), B(-\sqrt{3}, 1)$ et $C(-2, -2\sqrt{3})$.

- \bigcirc Déterminer les coordonnées polaires de A,B et C .
- $\langle 2 \rangle$ Placer les points A, B et C.
- \bigcirc a Déterminer une mesure de l'angle orienté $(\overrightarrow{OA}, \overrightarrow{OB})$.
 - \bigcirc Déduire la nature du triangle OAB
- \bigcirc Soit le point D tel que OADB est un carré .
 - \bigcirc Déterminer les coordonnées cartésiennes et les coordonnées polaires du point D .
 - b Déduire une valeur exacte de $\cos \frac{5\pi}{12}$

Exercice N° 4

Soit la fonction f définie sur \mathbb{R} par : $f(x) = x^3 + \alpha x + \beta$.

- Déterminer les réels α et β pour que (C_f) passe par le point A(1,0) et admettent en ce point une tangente parallèle à l'axe des abscisses .
- 2 Dans la suite on prend $\alpha = -3$ et $\beta = 2$.
 - a Déterminer les points de (C_f) ou la tangente est parallèle à la droite d'équation : 9x y + 4 = 0
 - ullet Écrire une équation de la tangente à (C_f) au point d'abscisse a tel que $(a \in \mathbb{R})$.
 - \subset En déduire les tangente à (C_f) passant par $I(\frac{1}{3},1)$.

Exercice N° 5

Soit ABCDEFGH un cube et les points I,J,k et P tels que I est le milieu de [FC], $\overrightarrow{EP} = \frac{1}{3}\overrightarrow{EH}$, $\overrightarrow{DK} = \frac{1}{3}\overrightarrow{DH}$ et $\overrightarrow{AJ} = \frac{2}{3}\overrightarrow{AI}$. On considère dans l'espace le repère $O,\overrightarrow{AB},\overrightarrow{AD},\overrightarrow{AE}$.

- 1 Déterminer les coordonnées de touts les points de la figure .
- \bigcirc les points I, J, k et P sont -ils coplanaires .



