Lycée Sers – El Kef Mr : Galaï Abdelhamid 07 Novembre 2023

Sciences Physiques

Devoir de Contrôle **N**° 1

Classes : 2^{ème} Technologie de l'informatique

Durée : 1 heure

Nom:Prénom:	Note :
Chimie	20
Exercíce: (6 points)	
On donne : $\mathbf{e} = \mathbf{1,6.10^{-19}}$ C. La masse du proton et celle du neutron: $\mathbf{m_p} = \mathbf{m_n} = \mathbf{1,67.10^{-27}}$	kg.
1 Le noyau de l'atome d'azote (N) a une masse $m_{noyau} = 23,38.10^{-27} \text{Kg}$, et sa charge de est $Qn = 11,20$	2.10 ⁻¹⁹ C.
a. Déterminer le nombre de masse A de cet atome d'azote :	/01
b. Déterminer le nombre de charge Z de cet atome d'azote :	/01
c. Donner le symbole du noyau de cet atome :	/0,5
d. Déterminer le nombre d'électrons que possède cet atome . Justifier :	/01
Un deuxième atome d'azote possède une particule de plus dans son noyau que le précédent atome. a. Identifier cette particule :	/0,5
b. Ecrire le symbole de ce deuxième atome d'azote :	/0,5
 c. Attribuer un nom qui relie ces deux atomes : « Ces deux atomes sont	
	/01
Physique	
Exercíce N° 1 : (6 points)	
● Le jeune « Issef » passe un aspirateur de puissance 1300 W dans sa chambre, pendant 15 minutes .	
a. Calculer, en joules, l'énergie £ 1 transférée à cet appareil pendant la durée du nettoyage :	/02
b. Donner ce résultat en kW.h :	/01
② Ce même élève révise son cours de Sciences Physiques pour le prochain contrôle pendant 2 heures et Pour cela, il s'éclaire avec une lampe de bureau de 0,07 kW.	30 minutes.
Calculer, en kWh, l'énergie E 2 transférée à cette lampe pendant cette révision :	/02
Calculer le prix d'un kilowattheure que la STEG a facturé à cette maison, sachant que le coût, seuleme utilisation de l'électricité (révision et nettoyage) est de 0,123 DT:	ent de son
	/01
	/l

(8 points) Exercice N°2:

A- Les caractéristiques intensité-tension de deux résistors **R**1 et **R**2 sont représentées par les courbes (figure 1)

1- Montrer qu'il s'agit bien deux caractéristiques de conducteurs ohmiques :

2- Interpréter brièvement ces courbes et déterminer les deux valeurs des grandeurs caractérisant chaque résistor :

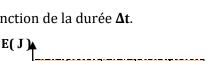
3- Déterminer la valeur de l'intensité **I** qui traverse la résistance équivalente de ces deux dipôles **en série**, si la

tension entre ses bornes est U = 45 V:

B- On considère le circuit de la figure 2; où $R_1=100\,\Omega$, $R_2=25\,\Omega$, $R_3=30\,\Omega$, $R_4=60\,\Omega$

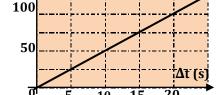
1- Calculer la résistance R_{eq} du résistor équivalent à l'association R_1 , R_2 , R_3 et R_4 :

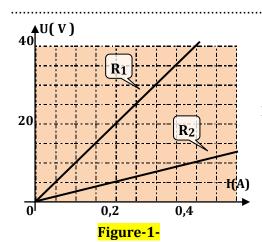
2- En déduire l'intensité I du courant débitée par le générateur sachant que U_{PN}=56 V:

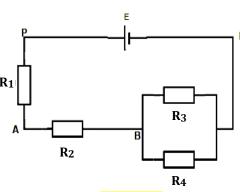


3- Calculer la puissance électrique P dissipée par effet joule dans le résistor équivalent Req:

 \mathbb{C} - Soit la courbe de l'énergie électrique dissipée par une autre résistance $\mathbf{R'}_{\acute{\mathbf{eq}}}$ en fonction de la durée Δt .


1- Déterminer graphiquement la valeur de la puissance correspondante :




2- Déterminer la valeur R'éq , en utilisant le code des couleurs (figure 3) :

3- En déduire l'intensité I' du courant qui traverse cette résistance R'éq:

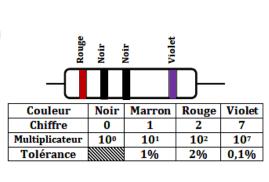


Figure-3-Figure-2-