Lycée Gaafour

Prof: Smaali Faouzi

Sciences physiques

Devoir de controle Nº1

2 éme CC

A.S: 2015 / 2016

Date: 04/11/2015

Durée: 2heures

Indications et consignes générales

- Donner les expressions littérales avant toute application numérique
- On tiendra compte de la rédaction et la propreté de la copie

CHIMIE (9 POINTS)

Exercice n°1: (6 Points)

On considère la classification par **pouvoir réducteur croissant** des métaux suivants :

Ag Cu Zn

1) Décrire les phénomènes observés et écrire l'équation de la réaction s'il y a lieu dans chacune des expériences suivantes :

Expérience (a): lame de Zinc plongée dans une solution de (Cu²⁺, SO₄²⁻)

Expérience (b): lame d'Argent plongée dans une solution de (Zn²⁺, SO₄²⁻)

Expérience (c): lame de Cuivre plongée dans une solution de (Ag⁺,NO₃⁻)

- 2) Pour l'expérience (c) la lame de cuivre a une masse m=3,175 g et la solution de nitrate d'argent (Ag^{+}, NO_{3}^{-}) a une concentration C=0.5 mol. L^{-1} et un volume V=20 cm³.
- a. Préciser le réactif limitant de cette réaction.
- b. Déterminer à la fin de la réaction :
- La masse de la lame de cuivre.
- La concentration des ions positifs de la solution
- La masse du corps solide obtenue.

On donne : $M(Cu) = 63.5 \text{ g.mol}^{-1}$ et $M(Ag) = 108 \text{ g.mol}^{-1}$

Exercice n°2: (3 Points)

On considère les deux couples redox suivants :

Couple 1 (I_2 , HI) et Couple 2 (H_2S , S)

- 1- Définir le nombre d'oxydation
- 2- a) Déterminer le nombre d'oxydation de l'élément iode I dans : I_2 et HI .
- b) Déterminer le nombre d'oxydation de l'élément soufre S dans : H2S et S
- c) Préciser pour chaque couple la forme oxydée et la forme réduite
- 3- On barbote 20 mL de H₂S gaz dans une solution aqueuse de diiode
- a) Ecrire l'équation bilan de la réaction
- b) Déterminer la masse de soufre formée

On donne: M (S) = 32 g.mol^{-1} --- le volume molaire du gaz V = 24 L.mol^{-1}

<u>C-B</u>

C-2

AB-1

AB-1

AB-1

AB-1

A-0,5

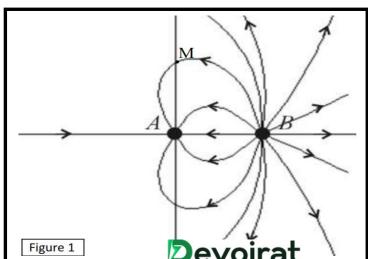
A_0,5

A_0,5

A_0,5

A_0,5

C_0,5


PHYSIQUE (11 POINTS)

Exercice n°1: (6 Points)

Les figures ci-dessous représentent les lignes de champ de systèmes de deux charges électriques ponctuelles q_A , q_B placées en A et B (ne pas tenir compte de la droite verticale).

- 1) Donner la définition d'une ligne de champ électrique
- 2) Préciser, en justifiant clairement votre réponse, le signe des charges q_A et q_B . Donner la nature (attractive ou répulsive) de la force entre les deux charges
- 3) a- Déterminer la valeur commune de la force d'interaction électrique
- $\|\vec{F}\|$ entre les deux charges q_A et q_B b-Représenter <u>sur la figure (1) de l'annexe</u> la force $F_{A/B}$ exercée par la charge q_A sur q_B et la force $F_{B/A}$ exercée par la charge q_B sur q_A à l'échelle : 1cm \longrightarrow 80N
- 4) Soit M un point de l'espace situé sur la droite verticale passant par A a) déterminer les valeurs des vecteurs champs électriques $E_A(M)$ et $E_B(M)$ créées respectivement par la charge q_A et par la charge q_B au point M
- b) Représenter les vecteurs $\overrightarrow{E}_A(M)$ et $\overrightarrow{E}_B(M)$ à l'echelle : 1 cm \longleftrightarrow 56,25.10⁵ N. C^{-1} sur la figure (1) de l'annexe
- c- Représenter le vecteur champ électrique résultant $\overline{E}(M)$ crée par les charges q_A et q_B simultanément au point M sur la même <u>figure (1)</u> de <u>l'annexe</u>. En utilisant l'échelle précédente, déterminer la valeur de $\overline{E}(M)$
- 5) Déterminer la valeur de la force \vec{F} subie par une charge $q = 10^{-9} C$ placée en M.
- 6) Déterminer l'abscisse x d'un point P situé sur l'axe horizontal Ax pour lequel le vecteur champ électrique résultant $\overrightarrow{E}(M)$ crée par les deux charges q_A et q_B est nul

<u>Donnée</u>: Constante de la loi de coulomb: K = 9.10^9 S.I $|q_A| = 2.10^{-6}$ C; $|q_B| = 4.10^{-6}$ C; AB = 3 cm; AM = 4 cm; BM = 5 cm

A_0,5

A_0,5

A_0,5

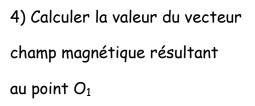
A_0,5

A-1

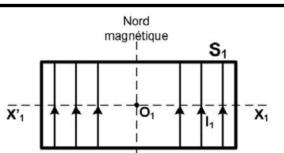
A_1

A_1

A_0,5


A_0,5

Exercice n°2: (5 Points)


Un solénoïde S_1 est placé horizontalement de façon que son axe $X_1'X_1$ soit perpendiculaire au plan de méridien magnétique . une aiguille aimantée sn libre de tourner sur un axe verticale est placé au centre O_1 de S_1 , on fait passer un courant d'intensité I_1 , l'aiguille fait une déviation α = 20° avec sa position initiale

1) donner les caractéristiques du vecteur champ magnétique \vec{B}_1 crée par S_1 au point O_1

- 2) Indiquer les faces sud et nord du Solénoïde (sur la feuille annexe -Fig 2)
- 3) justifier la position initiale et la Rotation de l'aiguille (faire un Schéma sur la feuille annexe - fig 2)

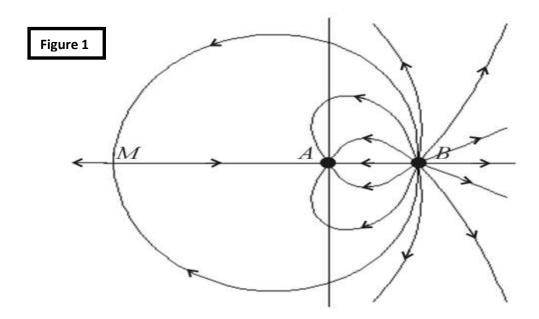
On donne : $\overrightarrow{\|B_H\|}$ = 2.10⁻⁵ T ; $\sin 20^\circ$ = 0,34 ; $\cos 20^\circ$ = 0,93 ; $tg 20^\circ$ = 0,36

sud

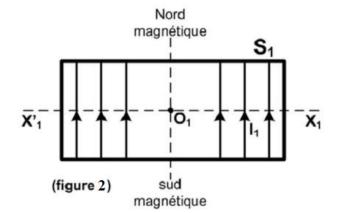
magnétique

(figure 2)

A-1,5


A-1

A-1,5


AB-1

Annexe (à rendre avec la copie)

Figure 2

