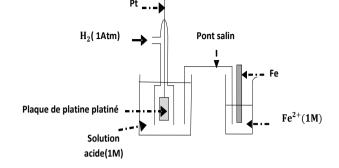
Bac blanc : Année scolaire : 2009 / 2010


L'épreuve comporte deux exercices de chimie et trois exercices de physique

CHIMIE:

Les solutions aqueuses sont considérées à la température 6 = 25 °C.

Exercice 1: 3 points.

- 1. On considère la pile électrochimique (P₁) schématisée ci-contre :
- a. Quel est le rôle du pont salin?
- **b.** Quels sont les couples redox mis enjeu dans la pile (P₁) considérée ?
- **c.** Ecrire le symbole de cette pile.
- **d.** La f é m de cette pile est : $E(P_1)$ = **−0,44V**.En déduire le potentiel normal du couple Fe^{2+}/Fe
- On considère maintenant la pile électrochimique (P2) symbolisée par :

$$Fe|Fe^{2+}(10^{-2}M) \parallel Pd^{2+}(10^{-1}M)|Pd$$

- a. Ecrire l'équation de la réaction chimique associée à cette pile,
- **b.** La mesure de la $f \in m$ de cette pile donne : $E(P_2) = 1,30V$. Montrer que le potentiel normal du couple Pd^{2+}/Pd est $E^{0}_{Pd^{2+}/Pd} = 0.83V$.
- 3. Classer les deux couples redox (Fe^{2+}/Fe) et (Pd^{2+}/Pd) par pouvoir réducteur croissant.

Exercice 2:4 points.

On réalise la pile électrochimique : $Sn|Sn^{2+}(C_1)| Pb^{2+}(C_2)|Pb$

- Le compartiment à gauche est constitué d'une lame en Sn plongeant dans un volume V_1 d'une solution de $SnCl_2$ de concentration $C_1=10^{-2}mol.\,L^{-1}$. Le potentiel normal du couple Sn^{2+}/Sn et $E_1^0 = -0, 14V.$
- Le compartiment à droite est constitué d'une lame en Pb plongeant dans un volume V_2 d'une solution de $PbCl_2$ de concentration $C_2=10^{-1}mol.\,L^{-1}$. Le potentiel normal du couple Pb^{2+}/Pb et $E_2^0=$ -0.13V.
 - 1. a . Faire le schéma de la pile.
 - **b** . Calculer la valeur de la $\mathbf{f} \in \mathbf{m}$ normale $\mathbf{E}^{\mathbf{0}}$ de la pile.
 - c. Exprimer la f é m E de la pile en fonction de E⁰, C₁ et C₂. Calculer alors la valeur de E. En déduire la polarité de la pile.
 - 2. La pile alimente un circuit électrique :
 - a. Ecrire l'équation de la transformation électrochimique qui s'effectue à chacune de ses deux
 - b. En déduire alors l'équation de la réaction spontanée qui se produit dans la pile lorsqu'elle débite.
 - c. Calculer la valeur de la constante d'équilibre K relative à la réaction associée à la pile.
 - 3. On donne le tableau d'avancement de la réaction associée à la pile :

Equation de la réaction		Sn	+ F	Pb ²⁺	Sn ²⁺	+	Pb
Etat du système	Avancement (mol)	Quantité de matière (mol)					
initial	x = 0			2.10^{-2}	10-3	3	
final	$\mathbf{x_f}$		2.1	$0^{-2} - x_f$	10 ⁻³ +	- X _f	

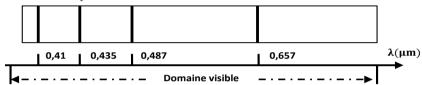
- a. Déterminer les valeurs des volumes V_1 et V_2 des solutions dans les deux compartiments de la pile. ;
- **b.** Montre que $\mathbf{x_f} = 9,88.10^{-3}$ mol. **c.** Calculer les molarités $[\mathbf{Sn^{2+}}]_{\text{\'eq}}$ et $[\mathbf{Pb^{2+}}]_{\text{\'eq}}$ des ions $\mathbf{Sn^{2+}}$ et $\mathbf{Pb^{2+}}$ lorsque la pile ne débite plus.
- 4. Lorsque la pile ne débite plus, on ouvre le circuit électrique et on ajoute dans le compartiment à gauche i la solution (S_1) jusqu'à ce que le volume atteigne la valeur $V'_1 = V_2$.

- $\textbf{a.} \quad \text{Montrer que la molarité des ions } Sn^{2+} \text{est } \left[Sn^{2+}\right] = \frac{[sn^{2+}]_{\text{\'eq}} v_1 + C_1(v_2 v_1)}{v_2} \quad \text{.Calculer } \left[Sn^{2+}\right].$
- **b.** Quelle est alors la nouvelle valeur **E** de la **fém.** de la pile ? Conclure.

PHYSIQUE:

Données:

- La constante de Planck : $h = 6,62.10^{-34}$ J.s
- La célérité de la lumière dans le vide : $C = 3.10^8 \text{ m. s}^{-1}$
- L'unité de masse atomique : $1 u = 1,66.10^{-27} \text{ Kg} = 931,5 \text{ Mev. C}^{-2}$
- L'électron-volt : $1 \text{ eV} = 1.6.10^{-19} \text{ J}$


Exercice 1:4 points.

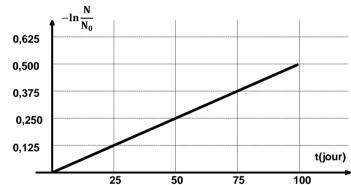
On donne : la masse de l'électron : $m_e = 9, 1.10^{-31}$ Kg.

Les différents niveaux d'énergie de l'atome d'hydrogène sont donnés par la formule :

$$E_n = -\frac{E_0}{n^2} \text{ avec } \begin{cases} E_0 = 13, 6eV \\ n \text{ un nombre entier non nul} \end{cases}$$

On donne ci-dessous le spectre d'émission de l'atome d'hydrogène où seulement les raies situées dans le domaine visible sont représentées :

- 1. a Quelle est la signification physique du signe moins (-) dans la formule ?
 - b- Quel est l'état de l'atome d'hydrogène lorsque :
 - n = 1?
 - $\mathbf{n} = \infty$?
 - c Que représente la valeur $E_0 = 13,6eV$?
- 2. Lorsque l'atome se désexcite, en passant d'un niveau d'énergie E_n à un niveau d'énergie E_p (n>p), il émet une radiation de fréquence $\nu_{n,n}$.
 - **a** Exprimer $\nu_{n,p}$ en fonction de E_n , E_p et la constante de Planck h .
 - b En déduire l'expression de la longueur d'onde $\lambda_{n,p}$ émise en fonction E_0 , h , C , n et p.
- 3. On appelle « série de Balmer » l'ensemble des transitions de l'atome d'un niveau $n>2\,$ d'énergie quelconque vers le niveau $p=2\,$
 - a. Montrer que $\lambda_{n,2} = 9,127.10^{-8}.\frac{4n^2}{n^2-4}$
 - **b** . Calculer les valeurs limites $\lambda_{\min} = \lambda_{n,\infty}$ et $\lambda_{\max} = \lambda_{3,2}$ de la série de Balmer.
- **4.** On donne ci-contre le diagramme des niveaux d'énergie de l'atome d'hydrogène :
- a. Pourquoi dit-on que l'énergie de l'atome est quantifiée ?
- **b.** Un photon d'énergie **W** = **2,55 eV** arrive sur un atome d'hydrogène. Que se passe-t-il :
 - > Si l'atome est dans son état fondamental?
 - \triangleright Si l'atome est dans son état excité n = 2 ?
- c. A partir de quel niveau d'énergie, dans lequel devrait se trouver l'atome, le photon incident d'énergie W = 2,55 eV est capable de l'ioniser ?
- **d.** Un atome d'hydrogène, pris dans son état fondamental, reçoit un électron d'énergie cinétique $E_C = 12$ eV. L'atome serat-il excité? si oui, déterminer:
 - Le niveau d'énergie de l'état excité.
 - ➤ La vitesse V_e de l'électron après le choc



Exercice 2:6 points.

Le bismuth ²¹⁰₈₃Bi est un isotope radioactif qui se désintègre en se transformant en polonium **Po** avec émission

d'une particule \mathbf{x} . L'isotope du polonium formé est lui-même radioactif, sa désintégration aboutit à la formation de l'isotope stable du plomb \mathbf{Pb} avec émission d'une particule \mathbf{y} Le diagramme ci-dessous traduit ces deux transformations (1) et (2) successives:

- 1. a . Pour chacune des désintégrations (1) et (2) :
 - > écrire l'équation de la réaction nucléaire correspondante. Préciser les lois appliquées.
 - identifier la nature de la particule émise.
 - donner le nom de la radioactivité subite.
 - **b**. Expliquer l'émission de la particule x par le noyau de bismuth lors de la désintégration (1).
- 2. a . Rappeler la définition de l'énergie de liaison E_1 d'un noyau ${}^{A}_{7}X$.
 - b . Calculer, en MeV, les énergie de liaison $E_l(Po)$ et $E_l(Pb)$ des noyaux de polonium et plomb formés.
 - c. Comparer la stabilité de ces deux noyaux.
- **3.** On suppose que le noyau de polonium **Po** est immobile dans le repère lié au laboratoire et que toute l'énergie libérée au cours de sa désintégration est transférée aux noyaux formés sous forme cinétique.
 - a. Montrer que l'énergie libérée au cours de la désintégration (2) est E = 5.4 MeV,
 - **b** . Sachant que l'énergie cinétique de recul du noyau de plomb est E_c (**Pb**) = **0,1 Mev**, calculer l'énergie cinétique E_c (**y**) de la particule **y**.
 - c. Une étude expérimentale montre que certaine particules y sont émises avec une énergie cinétique $E_c(y) = 5.1$ Mev .Interpréter ce résultat et calculer la longueur d'onde λ du rayonnement ν émis.
- **4.** On se propose de déterminer la période radioactive T de l'isotope du polonium Po formé. On dispose, à l'instant t=0, d'un échantillon contenant N_0 noyaux de Po. On détermine, à chaque instant t, le nombre N de noyaux non désintégrés. Les résultats sont rassemblés sur le graphe ci-contre .
 - **a** . Rappeler la loi de décroissance radioactive N = f(t).
 - b .Déterminer graphiquement la valeur de la constante radioactive λ .
 - **c** .Définir la période radioactive **T** d'un radionucléide. Exprimer **T** en fonction de
 - **λ**. En déduire la valeur de **T** ; pour l'isotope du polonium étudié.
 - **d** .Déterminer le nombre de particule **y** émise au cours du premier jour de désintégration si la masse initiale de

l'échantillon est $\mathbf{m_o} = \mathbf{4}$, $\mathbf{2}$ \mathbf{mg} .. On rappelle que : $\mathbf{m} = \frac{\mathbf{M}}{\mathbb{N}_A} \mathbf{N}$ où \mathbb{N}_A est le nombre d'Avogadro et \mathbf{M} la masse molaire.

On donne:
$$N_A = 6,02.10^{23}$$
; $1MeV = 1,6.10^{-13}$ J m $(\alpha) = 4,0015$ u; m $(Po) = 210,0008$ u; m $(Pb) = 205,9935$ u; m $(n) = 1,0087$ u; m $(n) = 1,0073$ u.

Exercice 3: (Etude d'un document scientifique) 3 points.

Le réacteur nucléaire naturel d'Oklo au Gabon

L'uranium naturel se compose de trois isotopes principaux (en % massique) :

²³⁸**U** (abondance = 99,2745 %), ²³⁵**U** (abondance = 0,7200 %), ²³⁴**U** (abondance = 0,0055 %).

Cependant, dans un gisement situé au Gabon, la composition en $^{235}_{92}$ U est égale à 0,440 %.

On estime qu'il y a deux milliards d'années, l'abondance de ²³⁵₉₂U était approximativement 3,5%.

On explique la baisse d'abondance anormale de $^{235}_{92}$ U dans le gisement du Gabon en faisant l'hypothèse qu'un réacteur naturel a fonctionné sur ce site. On a constaté, au cœur de ce site, une abondance en $^{235}_{92}$ U plus élevée que l'abondance moyenne du gisement de 0,44 %. Cela confirme l'existence d'un réacteur nucléaire qui a fonctionné pendant 1,7 milliard d'années.

Vraisemblablement, les eaux souterraines ont contribué à ralentir les neutrons de fission afin de provoquer

la réaction en chaîne. On explique ainsi la présence de zones où l'abondance en ²³⁵₉₂U est plus élevée que la moyenne.

Le $^{238}_{92}$ U , par capture de neutron, peut se transformer en plutonium qui donne du $^{235}_{92}$ U . Des réactions semblables se produisent dans des réacteurs modernes et sont à l'origine de la production de plutonium.

D'après: http://www.physics.isu.edu

Questions:

- 1. Pourquoi peut-on affirmer qu'une réaction en chaîne de fission de $^{235}_{92}$ U, comme celle qui s'effectue de nos jours dans les réacteurs nucléaires, pouvait avoir lieu il y a deux milliards d'années
- a. Comment expliquer la baisse d'abondance anormale de ²³⁵₉₂U dans le gisement du Gabon ?
 b. Quel indice permet de confirmer qu'il y a eu un réacteur nucléaire naturel au Gabon ?
- 3. Un isotope est dit "fertile" s'il peut engendrer un isotope fissile à l'issue d'une ou plusieurs réactions nucléaires. Citer, d'après le texte, une phrase qui justifier que le ²³⁸₉₂U est fertile.