

Lycée 2 mars 1934 KSAR HJLLAL

Sc. Physiques

AMOR YOUSSEF

Devoir de Contrôle N°3

4^{éme} Mathématiques

Durée :2H

17/03/2008

CHIMIE

(7 points)

Exercice n°1 (4pts)

Les graphiques de la figure 1 de l'annexe représentent les dosages de trois solutions acides A_1H , A_2H et A_3H par une solution d'hydroxyde de sodium $(Na^++C\Gamma)$ de concentration $Cb=0.1 \text{ mol.L}^{-1}$.

Le volume d'acide dose dans les trois cas est Va=10 mL.

1. On désigne par AH un acide qui peut être fort ou faible.

Ecrire l'équation chimique bilan de la réaction du dosage de l'acide AH par la solution d'hydroxyde de sodium si :

u nyui	a. L'acide AH est fort. b. L'acide AH est faible.	0,25	A
2. points	 a. Trouver les coordonnées des points d'équivalence de chaque courbe. (on note ces E₁, E₂ et E₃). b. En justifiant, en déduire d'après les résultats précédents les acides faibles. 	0,75 0,5	A B
3. Déte	erminer la concentration molaire initiale de l'acide fort.	0,5	В
4.	a. Déterminer le pKa de chaque acide faible.b. En justifiant ,classer ces acides d'après leurs force.	0,5 0,5	B A
5.	a. Rappeler les propriétés d'une solution tampon.b. Au cours des trois dosages dans quel(s) cas on peut obtenir une solution tampon?	0,5 0,25	A B

Exercice n°2 (3pts)

On relie par un pont salin:

- une demi-pile (1) constituée d'une ne lame de cuivre qui plonge dans une solution de sulfate de cuivre (Cu²⁺+SO₄²⁻).
- et une demi-pile (2) constituée d'une lame de fer qui plonge dans une solution de sulfate de fer II (Fe²⁺+SO₄²⁻).

0.25 A

1. a. A l'état initiale l'une des solutions est bleue. Laquelle?	0,25	A
b. Lors du fonctionnement de cette pile on observe que cette couleur s'éclaircit.	0,5	В
Déduire de cette observation les équations des réactions se produisant a chaque demi-plie.		
c. Quelle est le sens du courant électrique a l'extérieur de la pile lors qu'elle débite.		
d. Quelle est le pole positif de cette pile.	0,25	Α
e. Déduire l'équation de la réaction spontanée lorsque la pile fonctionne.		
	0,25	Α
2. La demi-pile (1) est placée a gauche.	0,25	
a. Représenter le schéma de la pile.		
b. Ecrire son symbole.	0, 5	Α
c. Ecrire son équation chimique associée.	0,25	Α
d. Sur quelle lame doit-on brancher la borne négative ou Com d'un voltmètre pour	0,25	Α
mesurer la f.e.m de la pile. En justifiant préciser le signe de la f.é.m.	0, 5	В

PHYSIQUE

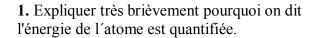
(13 points)

Exercice n°1 (7 pts)

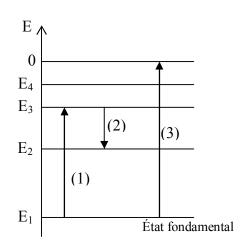
On reproduit à l'**échelle 1**, sur la figure 2 de l'annexe l'expérience de propagation des ondes rectilignes à la surface d'une cuve a onde.

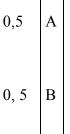
La source des ondes est un vibreur muni d'une réglette qui effectue un mouvement rectiligne sinusoïdale de fréquence **N=20Hz** dans le milieu 1 moins profond que le milieu 2.

- 1. a. Mesurer la longueur d'onde des ondes incidentes.
 - **b.** Déduire la célérité des ondes dans le milieu 1.
- 2. On éclaire la surface du liquide contenu dans la cuve à onde à l'aide d'un appareil électronique émettant des éclairs lumineux a des intervalles de temps réguliers. Pour une fréquence des éclairs N_e vérifiant la relation $N=pN_e$ avec p un entier non nul ,on obtient l'immobilité apparente de la surface du liquide.
 - a. Qu'appelle t-on cette appareil?
- **b.** Quelle conclusion peut-on déduire concernant les ondes se propageant dans le milieu 2.
- 3. La célérité des ondes dans le milieu 2 est $v_2=0.4$ m.s⁻¹.
- **a.** Calculer la distance **minimale** qui sépare deux points vibrant en phase appartenants à deux lignes de crête distinctes dans le milieu 2.
 - **b.** Mesurer l'angle d' incidence i₁ des ondes incidentes.
 - c. Calculer l'angle de réfraction i₂.
- **d.** En respectant les échelles, tracer (sur la figure 2 de l'annexe) dans le milieu 2 quatre lignes de crête réfractées à partir du point d'incidence **I**.
- **4.** Une partie de l'onde est réfléchi par la surface de séparation de deux milieux.
 - a. En justifiant, comparer la célérité des ondes incidentes et des ondes réfléchies.
- **b.** Tracer sur la figure 2 de l'annexe quatre lignes de crêtes correspondantes aux ondes réfléchies.


0,5 0,5 0,5 0,5 1	B B A B B B B
0,5	A
1	В

0.5 D


5. On modifiant la fréquence du vibreur on constate que les lignes de crêtes deviennent plus 0.5espacées. Quelle propriété du milieu de propagation est mise en évidence.


Exercice n°2 (6 pts)

Le diagramme ci-contre représente certains niveaux d'énergie de l'atome d'hydrogène.

- 2. Les flèches représentent soit l'absorption, soit l'émission d'un photon.
- a. Rappeler les caractéristiques (charge, masse et célérité) d'un photon.
- **b.** En justifiant, attribuer à chaque flèche le mécanisme correspondant (absorption ou émission)

0, 75 0, 5

0,25

0.5

0,5

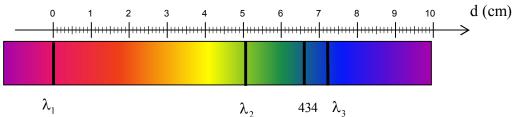
В

C

A

- c. Exprimer la longueur d'onde du photon émis en fonction des énergies des niveaux correspondants. Puis calculer sa valeur.
- 3. **a.** A quoi correspond le niveau d'énergie 0?
- **b.** Quelle énergie minimale en eV faut-il fournir pour ioniser l'atome se trouvant dans un état excité correspondant au niveau d'énergie 2?
 - c. Cet atome peut-il toujours absorber un photon d'énergie E telle que :

 c_1 : E<- E_1


 $c_2: E > -E_1$

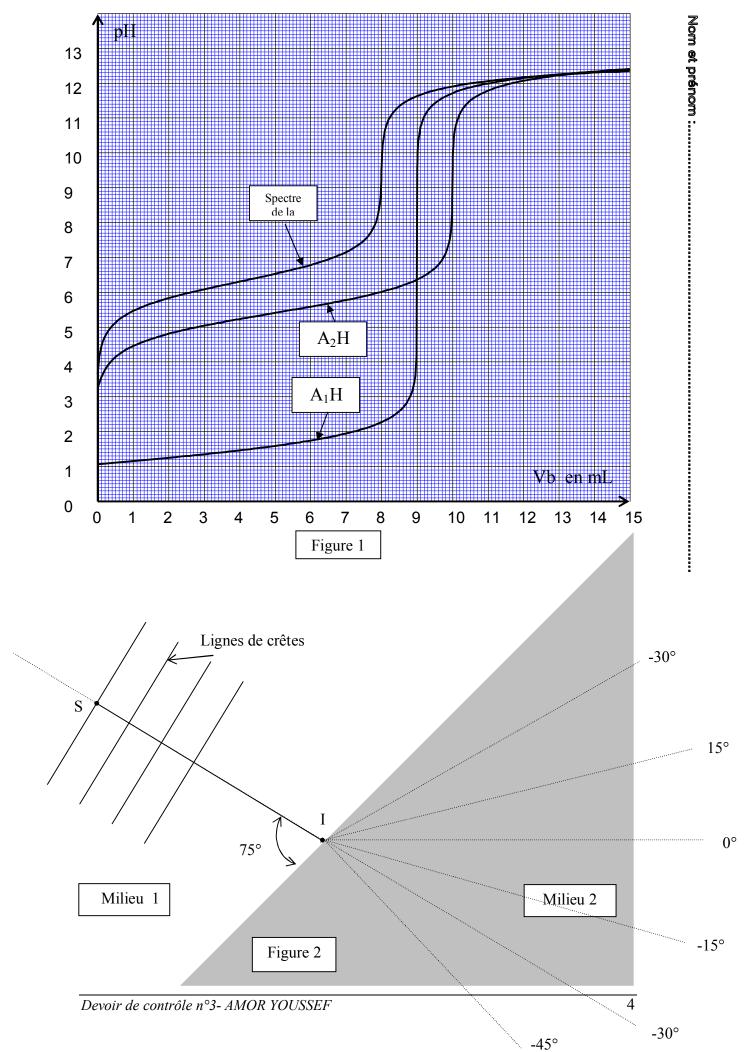
4. Les différents niveaux d'énergie de l'atome d'hydrogène sont données par la relation $E=-13.6/n^2$.

Quelle doit être la fréquence minimale du photon absorbé par un atome excité dans son niveau d'énergie E₄.

0, 5

5. La figure ci-dessous représente le spectre de l'atome d'hydrogène dans le domaine du visible.

- a. S'agit-il d'un spectre d'émission ou d'absorption? Justifier?
- **b.** En justifiant, et en vous aidons de la courbe $\lambda = f(d)$ et du tableau ci-dessous, déterminer, la couleur correspondante aux radiations de longueur d'ondes λ_1, λ_2 et λ_3 .


0,5

 $h=6,62.10^{-34} \text{ J.s}$; $c=3.10^8 \text{ m.s}^{-1}$; $1 \text{ eV}=1,6.10^{-19} \text{ J}$; $E_1=-13,6 \text{ eV}$; $E_2=-3,4 \text{ eV}$ et $E_3=-1,5 \text{ eV}$.

Les limites des longueurs d'ondes (en nm) des couleurs du spectre d'une lumière blanche sont les suivantes :

Violet	Bleu	Vert	Jaune	Orange	Rouge
400-424	424 – 491	491-575	575-585	585-647	647-700

ANNEXE

