LYCEE ASSAD IBEN AL FOURAT OUED ELLIL

BAC BLANC 2011

SECTION: SCIENCES TECHNIQUES

ÉPREUVE : MATHÉMATIQUES DUREE : 3 h COEFFICIENT : 3

Sujet proposé par : M. BERREZIG

Exercice 1: (4 points)

Pour chacune des questions suivantes une seule des trois réponses proposées est exacte. Indiquer sur votre copie le numéro et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

1) Le volume du solide de révolution obtenu par rotation autour de l'axe des abscisses du courbe de la fonction définie sur [1, e] par $f(x) = \frac{1}{\sqrt{x}}$ est égale à :

a) $\pi (1 - \sqrt{e})$

b) π

c) 1

2) La suite $\int_{1}^{e} \frac{(\ln x)^2}{x} dx$ est égale à

a) $\frac{1}{3}$

b) $-\frac{1}{3}$

c) $\frac{1-e}{3}$

3) $\lim_{x\to 0^+} x^{\frac{1}{3}}$ est égale à

a) +∞

b) 0

c) −∞

4) La valeur moyenne de la fonction $f: x \mapsto e^x$ sur [0, 2] est égale à :

a) $e^2 - 1$

b) $\frac{e^2-1}{2}$

c) $\frac{1-e^2}{2}$

Exercice 2: (6 points)

Soit g la fonction définie sur IR par $g(x) = 1 + x + e^x$ dont le tableau de variation est le suivant :

Χ	-∞ +∞
g'(x)	+
g(x)	+∞ -∞

- 1) Indiquer en justifiant si les propositions sont vraies ou fausses.
 - a) g admet une fonction réciproque définie sur IR.
 - b) g admet une fonction réciproque strictement croissante sur IR.
 - c) g admet une primitive strictement croissante sur IR.
- 2) a) Montrer que l'équation g(x) = 0 admet une solution unique α et que $-1,3 < \alpha < -1,2$
 - **b)** Déduire le signe de g(x).
- 3) Soit la fonction f définie sur IR par $f(x) = \frac{xe^x}{1+e^x}$. On désigne par C la courbe de courbe représentative de f dans un repère orthonormé (unité graphique 3 cm).

- a) déterminer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- **b)** Montrer que la droite Δ : y = x est une asymptote à C
- c) Etudier la position de C et Δ .
- **4) a)** Vérifier que f'(x) = $g(x) \frac{e^x}{(1+e^x)^2}$
 - b) dresser le tableau de variation de f.
 - c) Montrer que $f(\alpha) = \alpha + 1$
- **5)** tracer Δ et C.

Exercice 3: (5 points)

Soit une suite réelle définie sur IN par : $\begin{cases} u_0 = \frac{3}{2} \\ u_{n+1} = 1 + \sqrt{u_n - 1} \ , \ \forall n \in IN \end{cases}$

- 1) a) Montrer que, pour tout $n \in IN$, $1 < u_n < 2$.
 - **b)** Monter (u_n) est croissante.
 - c) en déduire (u_n) est convergente vers une limite ℓ que l'on déterminera.
- 2) Soit (v_n) la suite définie sur IN par $v_n = \ln(u_n 1)$
 - a) Montrer que (v_n) est une suite géométrique de raison $\frac{1}{2}$
 - **b)** Exprimer v_n puis u_n en fonction de n.
 - c) Retrouver alors $\lim_{n\to +\infty} u_n$

Exercice 4: (5 points)

Dans l'espace rapporté à un repère orthonormé, on considère les plans P et Q d'équations:

$$P: 2x - y + z + 2 = 0$$
 et $Q: x - y + 2z + 1 = 0$.

- 1) a) Montrer que les plans P et Q sont sécants selon une droite D.
 - **b)** Montrer que D passe par le point A(-1, 0, 0) et de vecteur directeur $\vec{u} = \vec{i} + 3 \vec{j} + \vec{k}$.
- 2) a) Vérifier que le point I (1, 0, 2) est équidistant à P et à Q.
 - b) Déterminer l'équation cartésienne de la sphère S de centre I et tangente aux plans P et Q.
 - c) Déterminer la position de S et D.
- 3) R est le plan passant par I et contenant la droite D.
 - a) Déterminer une équation cartésienne de R.
 - b) Déterminer le centre et le rayon du cercle d'intersection de S et de R.