b-mehdi.jimdo.com

<u>N.B</u>: La présentation et la qualité de la rédaction entreront pour une part importante dans l'appréciation des copies.

Exercice $n^{\circ}01$ (3 pts):

Soit les deux intégrales : $I = \int_0^{\frac{\pi}{4}} \frac{\cos x}{\cos x + \sin x} dx$ et $J = \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos x + \sin x} dx$

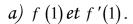
- 1/Calculer I + J et I J.
- 2/En déduire 1 et J.

Exercice $n^{\circ}02$ (3 pts):

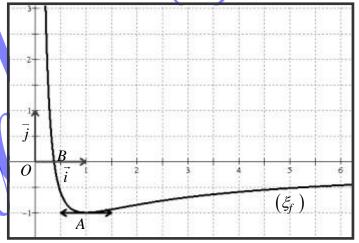
La courbe (ξ_f) ci-dessous représente une fonction f définie et dérivable sur $]0,+\infty[$. On note f 'la fonction dérivée de f sur $]0,+\infty[$. Les axes (Q,\vec{i}) et (Q,\vec{j}) sont des asymptotes à (ξ_f) .

La courbe (ξ_f) passe par les points A(1;-1) et $B(\frac{1}{e};0)$ et admet une tangente

parallèle à (O, \vec{i}) au point A(1, -1). En utilisant les données ci-dessus déterminer sans justification :



- 6) $\lim_{x\to 0^+} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- c) Les solutions de l'inéquation $f(x) \ge 0$.
- d) Les solutions de l'inéquation $f'(x) \ge 0$.



Exercice $n^{\circ}03$ (6 pts):

Le plan \mathscr{P} est rapporté à un repère orthonormé (O,\vec{i},\vec{j}) .

Soit
$$g(x) = \frac{3e^x + 5}{e^x + 2}$$

1/Déterminer D_g .

2/Calculer: $\lim_{x\to\infty} g(x)$ et $\lim_{x\to+\infty} g(x)$; Interpréter graphiquement les résultats obtenus.

b-mehdi.jimdo.com

- 3/Déterminer le domaine de dérivabilité de g et calculer g'(x).
- 4/ Dresser le tableau de variation de g.
- 5/Montrer que g réalise une bijection de D_g sur un intervalle I que l'on précisera. On note h la bijection réciproque de g.
- 6/Expliciter h(x) pour $x \in I$.
- 7/ Tracer (ξ_g) et (ξ_h) .

Exercice n°04 (4 pts):

Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v})

On considère l'équation d'inconnue complexe z:

$$(E): z^3 - (4+2i)z^2 + (2+7i)z - 3(i-1) = 0$$

- 1/Montrer que l'équation (E) admet une solution réelle z_0
- 2/Montrer que l'équation (E) admet une solution imaginaire pure z_1 .
- 3/a) Déterminer la troisième solution z_2 de l'équation (E) et placer les points

$$A(z_0)$$
; $B(z_1)$ et $C(z_2)$.

Soit D un point du plan d'affixe $z_3 = z_2 + 2$

b) Qu'elle est la nature du triangle BAD?

Exercice n°05 (4 pts):

L'espace \mathscr{E} est rapporté à un repère orthonormé $(O,ec{i},ec{j},ec{k})$. On considère les points

$$A(-1;-1;1)$$
; $B(3;2;-1)$ et $C(1;\frac{1}{2};1)$.

- 1/a) Montrer que les points A; B et C ne sont pas alignés.
 - b) Déterminer une équation cartésienne du plan P = (ABC).
- 2/On considère l'ensemble S_m des points M(x,y,z) vérifiant :

$$x^{2}+y^{2}+z^{2}-2mx-2(m+1)y+m^{2}+2m=0$$
; $m \in \mathbb{R}$.

- a) Montrer que S_m est une sphère dont on précisera, en fonction de m son centre I_m et son rayon R_m .
- b) Déterminer l'ensemble des points I_m lorsque m décrit $\mathbb R$.
- c) Etudier suivant les valeurs de m l'intersection de la sphère S_m et du plan P.

Bon Travail 🗷