Afli Ahmed

4Sc.exp

State Contraction

Devoir de Synthèse n°1

Mathématiques

Lycée I.K. Jemmel 04/05/2016

N.B : La qualité de la rédaction, la numérotation des pages et le respect de l'ordre des questions, constituent un élément déterminant dans l'appréciation de la copie

Exercice 1:(voir annexe page 3)

Exercice 2:(4,5points)

L'espace est rapporté à un repère orthonormé direct $(0,\vec{i},\vec{j},\vec{k})$.

On considère les points A(2,-1,1); B(1,-2,-1); C(-1,1,3) et D(0,1,-1)

- 1.) a. Déterminer les composantes du vecteur $\vec{u} = \overrightarrow{AB} \wedge \overrightarrow{AC}$.
 - b. En déduire que les points A, B et C ne sont pas alignés.
 - c. Montrer que les points A, B, C et D ne sont pas coplanaires.
- 2.) a. Calculer l'aire du triangle ABC.
 - b. Montrer que le volume du tétraèdre ABCD est égal à $\frac{11}{3}$
 - c. En déduire la distance du point D au plan (ABC).
- 3.) Déterminer l'ensemble des points M de l'espace tel que $(\overrightarrow{MA} \overrightarrow{MD}) \wedge \overrightarrow{MD} = \overrightarrow{0}$.

Exercice 2: (4,5points)

Soit f la fonction définie sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ par : $f(x) = 10 - 6 \cos(x)$.

- 1.) a. Dresser le tableau de variation de f.
 - b. Déterminer l'extremum de f en précisant sa nature.
- 2.) Soit θ un réel de $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$.On pose $(E_{\theta}):z^2+\left(1+e^{i\theta}\right)z-2\left(1-e^{i\theta}\right)=0$
 - a. Vérifier que (-2) est une solution de (E_{θ}) .
 - b. Déduire l'autre solution de (E_{θ}) .
- 3.) Soit A et M les points d'affixes respectives -2 et $1-e^{i\theta}$ avec θ un réel de $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$
 - a. Calculer la distance AM en fonction de θ .
 - b. En déduire la valeur de $\boldsymbol{\theta}$ pour la quelle AM est minimale. (utiliser la question 1.))

Calculer cette distance.

Exercice 3: (6,5points)

Soit f la fonction définie sur [2; $+\infty$ [par f(x) = $x - \sqrt{x^2 - 4}$

- 1.) Montrer que $\lim_{x\to +\infty} f(x) = 0$. Interpréter graphiquement ce resultat.
- 2.) a. Etudier la dérivabilité de f à droite en 2 et interpréter le résultat graphiquement.
 - b. Montrer que f est dérivable sur $]2; +\infty[$ et calculer f'(x) pour tout $x \in]2; +\infty[$.
- 3.) a. Dresser le tableau de variation de f.
 - b. Tracer la courbe C_f de f dans un repère orthonormé $(0, \vec{l}, \vec{j})$.
- 4.) a. Montrer que f admet une fonction réciproque f^{-1} continue et strictement décroissante sur un intervalle J que l'on précisera.
 - b. Montrer que f^{-1} est dérivable à gauche en 2 et donner $(f^{-1})^{\prime}{}_{g}(2)$.
 - c. Calculer $f^{-1}(1)$ et $(f^{-1})'(1)$.
 - b. Expliciter $f^{-1}(x)$ pour tout $x \in J$.
- 5.) Pour tout entier $n \ge 1$, on pose $v_n = \frac{1}{n+1} \sum_{k=0}^n f^{-1} \left(1 + \frac{1}{n+k} \right)$
 - a. Montrer que $f^{-1}\left(\frac{n+1}{n}\right) \le v_n \le f^{-1}\left(\frac{2n+1}{2n}\right)$
 - b. En déduire que (v_n) est convergente et donner sa limite.

Annexe à compléter et à remettre avec la copie

Nom et Prénom : -----

Exercice 1:(4,5points)

Soit f la fonction, définie et continue sur \mathbb{R} , représentée par la courbe ζ ci-dessous dans un repère orthonormé $(0,\vec{1},\vec{j})$.

- \times Δ : y = x est une asymptote à ζ au voisinage de $-\infty$
- 💥 La tangente à ζ au point d'abscisse 2 passe par le point O.

 \Join La courbe ζ admet une branche parabolique de direction l'axe des abscisses au voisinage de $+\infty$

$$\lim_{x \to -\infty} f(x) = - - -$$

$$\lim_{x \to +\infty} f(x) = ---$$

$$\lim_{x\to +\infty} \frac{f(x)}{x} = ---$$

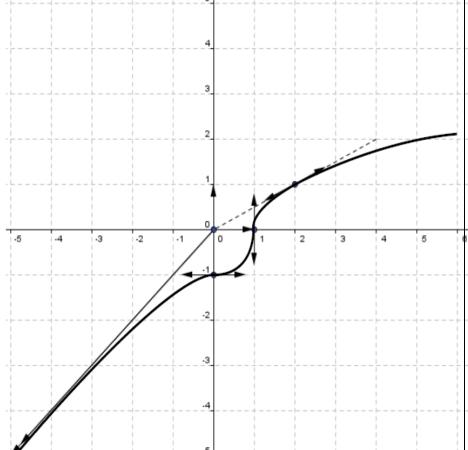
$$\lim_{x \to -\infty} \frac{2017}{x - f(x)} = - - -$$

$$\lim_{x\to 1^-}\frac{f(x)}{x-1}=---$$

$$\lim_{x\to 1^+}\frac{f(x)}{x-1}=---$$

$$\lim_{x\to 0}\frac{f(x)+1}{x}=---$$

$$f'(2) = - - -$$



2.) a. Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle J que l'on précisera.

> ------

b. Tracer $\mathcal{C}_{f^{-1}}$ dans le même repère que \mathcal{C}_{f} ------

c. Calculer
$$\lim_{x\to 0} \frac{f^{-1}(x) - 1}{x} = - - - -$$

3.) Justifier l'existence d'un point de C_f d'abscisse compris entre 0 et 1 où la tangente est parallèle à la droite d'équation y = x

