Lycée Houmet Souk	<u>Devoir de Contrôle N : 3</u>	3 Sciences EXP 3
Prof: Loukil Mohamed	<u>Durée</u> : <u>2 Heures</u>	<u> 20 - 04 - 2017</u>

EXERCICE N: 1 (5.5 points)

Une urne contient **neuf** jetons, trois blancs numérotés 1, 2, 2, quatre rouges numérotés 1, 1, 2, 3 et deux noirs numérotés 1, 1.

1) On tire au hasard et simultanément trois jetons de l'urne.

Déterminer les cardinaux des ensembles suivants :

- a) A: Obtenir trois jetons de même couleur.
- **b**) **B**: Obtenir trois jetons portant des numéros impairs.
- c) C: Obtenir au moins un jeton rouge.
- d) D: Obtenir un seul jeton rouge et exactement deux jetons portant des numéros impairs.
- 2) On tire successivement et sans remise quatre jetons de l'urne.

Déterminer les cardinaux des ensembles suivants :

- a) E: Obtenir exactement deux jetons noirs.
- **b) F**: le premier jeton tiré est blanc.
- c) G: La somme des numéros obtenus est égal à 6.
- **3)** On tire **successivement** et **avec remise trois** jetons de l'urne .

Déterminer le cardinal de l'ensemble suivant : **H** : Obtenir un tirage tricolore .

EXERCICE N: 2 (5 points)

Soit la suite réelle (U_n) définie sur IN par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \frac{2}{2\sqrt{2} - U_n} \end{cases}$

- **1)** Montrer par récurrence que pour tout $n \in IN$ on a : $U_n < \sqrt{2}$.
- **2) a)** Montrer que la suite (U_n) est croissante sur IN.
 - \boldsymbol{b}) (U_n) est elle convergente ? justifier la réponse .
- **3)** Soit la suite (V_n) définie sur IN par : $V_n = \frac{U_n}{\sqrt{2} U_n}$.
 - **a**) Vérifier que pour tout $n \in IN$; $V_{n+1} = \frac{\sqrt{2}}{\sqrt{2} U_n}$
 - **b**) Montrer que (V_n) est une suite arithmétique de raison r = 1.
 - **c)** Exprimer V_n en fonction de n.
 - **d**) Déduire que pour tout $n \in IN$; $U_n = \frac{n\sqrt{2}}{n+1}$.
 - **e)** Calculer alors $\lim_{n \to +\infty} U_n$.

EXERCICE N: 3 (9.5 points)

Soit la fonction f_m définie sur IR par : $f_m(x) = mx^4 - 2x^3 + (3 - 2m)x^2 + m$ où m paramètre réel . On désigne par (C_m) la courbe représentative de f_m dans le repère orthonormé (C_m) (C_m) (C_m) (C_m)

- **A)1)a)** Montrer que pour tout réel x; $f_{1}(x) = 2x(2x-1)(x-1)$.
 - **b**) Dresser le tableau de variations de f_1 .
 - **2)** Soit l'équation : $(E_{\alpha}) x^4 2x^3 + x^2 + 1 = \alpha$ où α est un paramètre réel .

 En utilisant le tableau de variations de f_1 , déterminer les valeurs de α pour que (E_{α}) admet exactement quatre solutions .
 - **3**) Montrer que la droite $\Delta: x = \frac{1}{2}$ est un axe de symétrie de (C_1).
- **B)** Dans toute la suite on prend: m = 0, on note: f_0 par f et (C_0) par (Cf)
 - **1)** Dresser le tableau de variations de f.
 - **2) a)** Montrer que le point $\Omega\left(\frac{1}{2}, \frac{1}{2}\right)$ est un point d'inflexion pour **(Cf)**.
 - **b**) Donner une équation cartésienne de la tangente (T) à (Cf) au point Ω .
 - **3)** Résoudre dans IR l'équation : f(x) = 0
 - **4)** Tracer (T) et (Cf) dans le repère R.
 - **C)** Soit la fonction g définie sur IR par : $g(x) = 2|x|^3 + 3x^2$.
 - **a)** Etudier la parité de g.
 - **b)** Tracer (**Cg**) à partir de (**Cf**) , expliquer .

