Lycée Ht. Souk(2) Jerba	Devoir de contrôle n° 3	Prof : Mr SAAFI Rochdi
Date : Le 08 Mai 2012	Durée : 2 ^h	Classes : 3° Sc.exp 1+ 2

Exercice n°1: (5 points)

Soient $f(x) = x^3 + 3x + 4$ et C_f sa courbe répresentative dans un repère orthonormé.

- 1°) a) Dresser le tableau de variation de f.
 - b) Ecrire l'équation réduite de T: la tangente à C_f au point A d'abscisse nulle.
 - c) Etudier les positions relatives de C_f par rapport à T.
 - d) Montrer que : A est le seul point d'inflexion de C_f .
 - e) Etudier les branches infinies de C_f .
- 2°) a) Calculer f(-1).
 - b) Construire C_f .
 - c) Dresser le tableau de signe de f(x).
- 3°) Soit $g(x) = x^4 + 6x^2 + 16x + 10$.
 - a) Exprimer g'(x) en fonction de f(x).
 - b) Dresser, alors, le tableau de variation de g.
 - c) Déduire que pour tout $x \in \mathbb{R}$ on a $g(x) \ge 1$.

Exercice n°2: (6 points)

Soit
$$U$$
 la suite définie sur $\mathbb N$ par :
$$\begin{cases} U_0 = 0 \\ pour \ tout \ n \in \mathbb N \ on \ a \ U_{n+1} = \frac{3U_n + 2}{U_n + 2} \end{cases}$$

- 1°) Calculer U_2 .
- 2°) Soit $f(x) = \frac{3x+2}{x+2}$
 - a) Dresser le tableau de variation de f.
 - b) Déduire que : f([0,2]) = [1,2]
 - c) Montrer, par récurrence, que : pour tout $n \in \mathbb{N}$ on a : $U_n \in [0, 2]$
- 3°) a) Montrer que $\it U$ est croissante.
 - b) Déduire que U est convergente.

4°) Soit
$$V_n = \frac{1}{2^{n-1}}$$

- a) Montrer que : $\lim V = 0$.
- b) Montrer que : pour tout $n \in \mathbb{N}$ on a : $2 U_{n+1} = \frac{2 U_n}{2 + U_n}$
- c) Déduire que : pour tout $n \in \mathbb{N}$ on a : $2 U_{n+1} \le \frac{1}{2}(2 U_n)$
- d) En déduire que, pour tout $n \in \mathbb{N}$ on a : $0 \le 2 U_n \le V_n$
- e) Calculer, alors, la limite de la suite U.

Exercice n° 3: (9 points)

L'espace étant muni d'un repère orthonormé $R = (0, \vec{i}, \vec{j}, \vec{k})$.

Soient
$$A(1,1,-2)$$
; $B(-3,2,1)$; $C(-1,-1,2)$; $D(6,2,-2)$ et $\vec{u} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

- I°) 1°) Montrer que les points A, B et C définissent un plan P.
 - 2°) a) Montrer que : $[M(x, y, z) \in P]$ si et seulement si [x + y + z = 0].
 - b) Déduire que les points A, B, C et D ne sont pas coplanaires.
 - 3°) Soit Δ la droite passant par D et de vecteur directeur \vec{u} .
 - a) Montrer que pour tout point $M(x, y, z) \in \Delta$ il existe un réel α tel que $\begin{cases} x = \alpha + 6 \\ y = 2\alpha + 2 \\ z = 3\alpha 2 \end{cases}$
 - b) Déduire que Δ coupe le plan P en un point H dont on donnera les coordonnées.
 - c) En déduire que Δ et (AB) sont sécantes.
- **II**°) Une urne contient 6 jetons noirs numérotés −1, −1, −1, 0, 2, 2

Et 5 jetons blancs numérotés 0,0,1,1,1.

On tire successivement et <u>avec remise</u> 3 jetons de l'urne et on note x, y et z les numéros portés respectivement par le premier, le deuxieme et le troisieme jeton tiré.

Le triplet (x, y, z) disignera les coordonnées d'un point M de l'espace.

- 1°) a) Dénombrer tous les tirages possibles.
 - b) Dénombrer les points de l'espace qu'on peut obtenir.
- 2°) Dénombrer les tirages donnant :
 - a) M = C.
 - b) les points *A* , *B* , *C* et *M* sont coplanaires.
 - c) Les trois jetons tirés sont de même couleur.
 - d) Les trois jetons tirés sont de même couleur **et** $M \in P$.
 - e) Un seul jeton blanc est tiré **et** $M \in P$