LYCEE PILOTE **MONASTIR**

DEVOIR DE CONTROLE

MOHAMED BENZINA

2010/2011

MATHEMATIQUE

Classe 3 S

EXERCICE N° 1 (3 points)

ABCDEFGH est un cube d'arrête 1.

On munit l'espace du repère direct $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$

1) $\overline{AC.BH}$ est égale à :

a) 0

b) $\sqrt{2}$

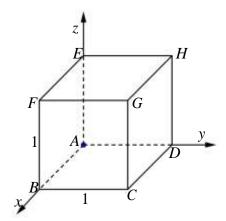
c) $\sqrt{3}$

2) Une équation du plan (ECG) est :

a)
$$x + y - 2 = 0$$

b) x+y-1=0 c) x-y=0

c)
$$x - y = 0$$



3) On désigne par I le milieu du segment |EG|Une représentation paramétrique de la droite (IC) est :

a)
$$\begin{cases} x = \alpha + 1 \\ y = \alpha + 1 \\ z = 2\alpha \end{cases}$$
 $\alpha \in IR$

a)
$$\begin{cases} x = \alpha + 1 \\ y = \alpha + 1 , \ \alpha \in IR \end{cases}$$
 b)
$$\begin{cases} x = \alpha + 1 \\ y = \alpha + 1 , \ \alpha \in IR \end{cases}$$

$$z = 2\alpha$$

c)
$$\begin{cases} x = -\alpha + 1 \\ y = \alpha + 1, \ \alpha \in IR \\ z = 2\alpha \end{cases}$$

EXERCICE N° 2 (7 points)

L'espace étant rapporté à un repère orthonormé direct $(0, \vec{i}, \vec{j}, \vec{k})$.

On considère la famille des plans P_m : (m+1) x + (3-m) y + (5 - 2m) z + 3m -1 = 0. où m est un paramètre réel.

- 1) Vérifier que les points I(-2,1,0) et J(-1,-6,4) appartiennent à P_m , $\forall m \in IR$
- 2) En déduire que tous les plans P_m contiennent une droite Δ dont on donnera les équations paramétriques
- 3) Soit le plan Q : x y 2z + 3 = 0.
 - a) Déterminer une équation cartésienne du plan Q' de la famille des plans P_m perpendiculaire à Q.
 - b) Montrer que Δ est incluse dans Q.
 - c) En déduire que $Q' \cap Q = \Delta$
- 4) Soit le point A (1, 2,-1) et D la droite dont une représentation paramétrique est

D:
$$\begin{cases} x = \alpha - 1 \\ y = -\alpha , \ \alpha \in IR \\ z = -2\alpha + 2 \end{cases}$$

- a) Déterminer les coordonnées du point H projeté orthogonal de A sur D
- b) En déduire la distance du point A à la droite D.

EXERCICE Nº 3 (4 points)

- 1) Montrer que pour tout réel $x \ge 0$ et pour tout entier naturel n , on a : $(1+x)^n \ge 1+nx$
- 2) On considère la suite (u_n) définie pour tout $n \ge 1$ par : $u_n = \frac{n!}{n^n}$ En utilisant la question 1), montrer que pour tout $n \ge 1$ on a : $\frac{u_n}{u_{n+1}} \ge 2$
- 3) En déduire que (u_n) est décroissante
- 4) Montrer que pour tout $n \ge 1$ on $a : 0 \le u_n \le \frac{1}{2^{n-1}}$
- 5) En déduire la limite de (u_n)

EXERCICE Nº 3 (6 points)

On se propose d'étudier l'existence et les propriétés de la suite (u_n) définie par la donnée d'un réel u_0 et la relation pour tout $n \in IN$:

$$u_{n+1} = \sqrt{\frac{1 - u_n}{2}}$$

- 1) a) Montrer que la suite $\left(u_{n}\right)$ existe si, et seulement si, $u_{0}\in\left[\,-1\,;1\,\right]$
 - b) Déterminer u₀ de sorte que la suite (u_n) soit constante
- 2) Dans la suite de l'énoncé, on posera $u_0 = \sin \alpha_0$, avec : $\alpha_0 \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$
 - a) Justifier ce choix. Que devient (u_n) si $\alpha_0 = \frac{\pi}{6}$?
 - b) Etablir l'égalité, pour tout $\alpha \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] : \sqrt{\frac{1-\sin\alpha}{2}} = \sin\left(\frac{\pi}{4} \frac{\alpha}{2}\right)$
 - c) Etablir que, pour tout $n \in IN$, il existe un unique $\alpha_n \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ tel que $u_n = \sin \alpha_n$. Quelle relation y a-t-il entre α_{n+1} et α_n ?
 - d) On considère la suite (v_n) de terme général vérifiant : $v_n = \alpha_n \frac{\pi}{6}$ Montrer que cette suite est une suite géométrique. En déduire α_n puis u_n en fonction de n et α_0 . La suite (u_n) a-t-elle une limite ? Quelle est cette limite ?

2010/2011

LPM

PROF:BENZINA.M