Prof	Mechmeche Imed
Lycée	Borj-cedria
Niveau	3 ^{ème} Maths

Devoir de synthèse N°2

Matière	Maths
Date	06/03/2012
Durée	3 h

Exercice 1: (3 pts)

Démontrer chacune des propositions suivantes en utilisant un raisonnement par récurrence.

- 1) Pour tout entier naturel $n \ 4^n + 5^{2n+1}$ est divisible par 3.
- 2) Pour tout entier nature $n \in \mathbb{N}^*$ $2^{n-1} \le n!$

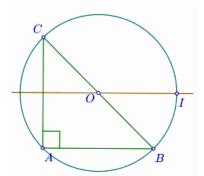
Exercice 2: (6 pts)

Dans la figure ci-contre le triangle ABC est isocèle rectangle en A.

O est le centre du cercle circonscrit à ABC, (OI) est la médiatrice de [AC].

Reproduire la figure sur votre copie et la compléter au fur et à mesure.

Soit R la rotation d'angle $\frac{\pi}{4}$ qui Transforme C en A.



- 1) Montrer que I est le centre de R.
- 2) Soit D l'image de A par R, montrer que I, B et D sont alignés.
- 3) Soit Q le point de [AB] tel que AQ = CO. Montrer que R(O) = Q.
- 4) Les droites (IA) et (CB) se coupent en E. Montrer que R(E) = B et que CE = AD.
- 5) a) Montrer que les droites (QD) et (AB) sont perpendiculaires.
 - b) En déduire que les points Q, E et D sont alignés.

Exercice 3: (5 pts)

Soit g la fonction définie par $g(x)=2\sqrt{x^2-4x}$. On note C_g sa courbe représentative dans un repère orthonormé (o,\vec{t},\vec{j}) .

- 1) Montrer que g est définie sur $]-\infty,0] \cup [4,+\infty[$.
- 2) Montrer que la droite Δ : x=2 est un axe de symétrie de C_q
- 3) Montrer que C_g admet au point d'abscisse 4 une demi-tangente verticale.
- 4) Montrer que les droites D et D' d'équations respectives y=2x-4 et y=-2x+4 sont des asymptotes obliques à C_q respectivement en $+\infty$ et en $-\infty$
- 5) Calculer g'(x) puis dresser le tableau de variation de g.

- 6) Tracer D , D' et C_g
- 7) Soit la fonction f définie par f(x) = g(|x| + 4)
 - a) Montrer que f est définie sur $\mathbb R$ et qu'elle est paire.
 - b) Expliquer comment peut-on déduire \mathcal{C}_f à partir de \mathcal{C}_g . Tracer \mathcal{C}_f dans le même repère $(o, \vec{\iota}, \vec{\jmath})$.

Exercice 4: (6 pts)

Dans le plan complexe rapporté à un repère orthonormé $(o, \vec{\iota}, \vec{\jmath})$, on considère les points A(2), $B(1+i\sqrt{3})$, C(-2i) et $D(-\sqrt{2}+i\sqrt{2})$

- 1) a) Montrer que les points A, B, C et D appartiennent au cercle de centre O et de rayon 2
 - b) Ecrire sous forme trigonométrique les nombres $\,Z_{B}\,$, $\,Z_{C}\,$ et $\,Z_{D}.\,$
 - c) Construire alors les points A, B, C et D.
- 2) Soit $U = Z_D \times \overline{Z_B}$.
 - a) Déterminer le module et un argument de U.
 - b) Ecrire *U* sous forme cartésienne.
 - c) En déduire la valeur exacte de $\cos(\frac{5\pi}{12})$.
- 3) Soit le point E d'affixe $Z_E = Z_B + Z_D$
 - a) Montrer que OBED est un losange.
 - b) En déduire un argument de E.
- 4) Déterminer les ensembles suivants

$$\Delta = \{M(Z); |\bar{Z} - 2i| = |Z - 1 - i\sqrt{3}|\}; \Gamma = \{M(Z); |iZ - 2| = 2\}$$

Bon travail.