Lycee H. Souk Djerba Prof: Loukil Mohamed

<u>Devoir de Contrôle</u> N: 2 Durée: 2 Heures 3 Mathématique 1 22 Février 2011

EXERCICE N: 1 (8 points)

A) Le plan complexe est muni du repère orthonormé direct $R(O, \vec{u}, \vec{v})$ (Unité: 2 cm).

A, **B** et **C** les points d'affixes respectives : $\mathbf{Z}_A = \sqrt{2} + i \sqrt{2}$, $\mathbf{Z}_B = \sqrt{2} - i \sqrt{2}$ et $\mathbf{Z}_C = -\sqrt{3} + i$.

1) Déterminer la nature des ensembles suivants :

 $\Delta = \{ M \in P \text{ d'affixes } Z \text{ telles que} : |Z - \sqrt{2} - i \sqrt{2}| = |Z| \}$

 $\Gamma = \{ M \in P \text{ d'affixes Z telles que} : |i \overline{Z} - 1 + i \sqrt{3}| = 2 \}$

- **2) a)** Ecrire Z_A , Z_B et Z_C sous forme trigonométrique.
 - **b**) Déduire que les points **A** , **B** et **C** appartiennent au cercle (**C**) de centre **O** et de rayon 2 .
 - c) Placer les points A, B et C dans le repère R.
- **3**) Déterminer l'affixe Z_D du point D pour lequel ABCD soit un parallélogramme .
- **B**) On donne le nombre complexe $U = Z_B \cdot Z_C$.
 - 1) Ecrire U sous la forme cartésienne.
 - **2)** Ecrire **U** sous la forme trigonométrique .
- **3)** Déduire les valeurs exactes de $\cos \frac{7\pi}{12}$, $\sin \frac{7\pi}{12}$ puis $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$. **EXERCICE N**: 2 (5 points)

A) Soit g la fonction définie par : $g(x) = \frac{4x^2 - 3x}{1 - x}$.

- **1)** Dresser le tableau de variations de g.
- **2)** Préciser les extrema de g et leur nature .
- **B**) Soit f la fonction définie par : $f(x) = x^3 \frac{3}{2}x^2$.
 - (Cf) sa courbe dans le repère orthonormé $R(O, \vec{i}, \vec{j})$.

Soit m un réel de l'intervalle] 0 ; $\frac{3}{4}$ [, on note (T_m) la tangente à (Cf) au point M d'abscisse m .

- **1)** Ecrire, en fonction de m, une équation cartésienne de la tangente (T_m).
- **2)** La tangente (T_m) coupe l'axe des abscisses au point N.
 - **a**) Montrer que la distance $ON = -\frac{1}{6}g(m)$.
 - **b**) Déterminer le point N pour lequel la distance ON est maximale .

EXERCICE N:3 (7 points)

Soit g la fonction définie sur $[0,\pi]$ par : $g(x) = a \cos 2x + b \cos x - \frac{1}{2}$ où a et b sont deux constantes. On désigne par (Cg) la courbe représentative de g dans un repère orthonormé.

- **A)1)** Calculer pour tout $x \in [0, \pi]$, g'(x) en fonction de a et b.
 - **2**) Déterminer les réels a et b pour lesquels g admette un extremum en $\frac{2\pi}{3}$ égale à 2 .
- **B**) Soit f la fonction définie $sur[0, \pi] par: f(x) = cos 2x + 2 cos x \frac{1}{2}$.
 - **1)** Montrer que pour tout $x \in [0, \pi], f(x) = 2\cos^2 x + 2\cos x \frac{3}{2}$.
 - **2) a)** Résoudre dans $[0, \pi]$ l'équation : f(x) = 0.
 - **b**) Résoudre dans $[0, \pi]$ l'inéquation : $2 \cos x + 1 \ge 0$.
 - **3) a)** Montrer que pour tout $x \in [0, \pi]$, $f'(x) = -2 \sin x (1 + 2 \cos x)$.
 - **b**) Etudier les variations de f .
 - **c**) Déduire le signe de f(x) pour tout $x \in [0, \pi]$.
 - **4)** Calculer: $\lim_{x \to \frac{\pi}{3}^+} \frac{1}{f(x)}$ et $\lim_{x \to \frac{\pi}{3}} \frac{2\cos 2x + 4\cos x 1}{6x 2\pi}$.