LYCÉE REMADA TATAOUINE

Année Scolaire : 2017 - 2018

Date: Avril 2018

 $\hbox{ Professeur}: \ M^{\scriptscriptstyle R} \ HAMDI \ ZANTOUR$

Classes : $1^{\text{ères}} S_3$ et S_4

Durée: 45 minutes

Devoir de contrôle N°4

MATHÉMATIQUES

Exercice 1 (4 points)

Pour chacune des questions suivantes une seule réponse est exacte, cocher la bonne case.

Questions	Réponses
1. L'ensemble des solutions dans $\mathbb R$ de l'inéquation :	$\square [-2; +\infty[$
$-5x \ge 10$ est égal à	\square [5; + ∞ [
	\square] $-\infty$; -2]
2. On munit la droite Δ du repère (O, I)	□ sont égaux
$\Delta \begin{array}{c ccccccccccccccccccccccccccccccccccc$	□ sont colinéaires
Les vecteurs \overrightarrow{FO} et \overrightarrow{EO}	□ sont opposés
3. Soit l'application affine f définie par :	\Box -4
$f(x) = \frac{-8 - 6x}{2}$	\square -3
Le coefficient de f vaut	3
4. Le nombre $-\sqrt{5}$ est une solution de l'inéquation :	$\square x + \sqrt{5} > 0$
	$\square \ 2x + \sqrt{5} < 0$
	$\Box -x - \sqrt{5} < -5$

Exercice 2 (5 points)

Pour tout nombre réel x, on donne l'expression :

$$A(x) = -6 + 20x - 6x^2$$

- 1. a/ Vérifier que l'on a : A(x) = (3x 1)(6 2x)
 - b/ Résoudre dans $\mathbb R$ l'équation : A(x) = 0.
- 2. Dresser un tableau de signe pour A(x) puis déduire l'ensemble des solutions dans \mathbb{R} de l'inéquation : $A(x) \ge 0$.

Exercice 3 (5 points)

Soit ABC un triangle quelconque, E et F sont deux points tels que :

$$\overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{BC}$$
 et $\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{AB}$

- 1. Construire les points E et F.
- 2. Montrer que C est le milieu de [EF].
- 3. Montrer que les vecteurs \overrightarrow{EF} et \overrightarrow{AB} sont colinéaires.

Exercice 4 (6 points)

Soit l'application f définie par : f(x) = -6 + 5x

- 1. Donner la nature de f puis préciser son coefficient.
- 2. a/ Calculer f(0), f(1) et f(2).
 - b/ Tracer Δ la représentation graphique de f dans un repère (O, I, J).
- 3. Résoudre graphiquement puis par le calcul l'équation suivante : f(x) = 4

Lycée Remada Tataouine Professeur : M^R Hamdi zantour

Année Scolaire : 2017 - 2018 Classe : $1^{\text{ère}} S_4$

Date : Mardi 10 Avril 2018 Durée : 45 minutes

Devoir de contrôle N°4

Mathématiques

Exercice 1 (4 points)

Pour chacune des questions suivantes une seule réponse est exacte, cocher la bonne case.

Questions	Réponses
1. L'ensemble des solutions dans $\mathbb R$ de l'inéquation :	\square [2; + ∞ [
$3x \ge 6$ est égal à	\square [3; +\infty[
	\square [6; $+\infty$ [
2. On munit la droite Δ du repère (O, I)	☐ sont non colinéaires
$\Delta \begin{array}{c ccccccccccccccccccccccccccccccccccc$	□ sont colinéaires
Les vecteurs \overrightarrow{BO} et \overrightarrow{OA}	□ sont opposés
3. Soit l'application affine f définie par : $f(x) = 1 - 3x$	\square $A(1;0)$
La représentation graphique de f passe par le point	$\square B(0;3)$
	\square $C(0;1)$
4. La représentation graphique d'une application affine	☐ une demi-droite
définie sur l'intervalle $[-5;5]$ est	\square un segment de droite
	☐ une droite

Exercice 2 (5 points)

Pour tout nombre réel x, on donne l'expression :

$$A(x) = -6 + 5x + x^2$$

- 1. a/ Vérifier que l'on a : A(x) = (x + 6)(x 1)
 - b/ Résoudre dans \mathbb{R} l'équation : A(x) = 0.
- 2. Dresser un tableau de signe pour A(x) puis déduire l'ensemble des solutions dans \mathbb{R} de l'inéquation : A(x) < 0.

Exercice 3 (5 points)

Soit ABC un triangle quelconque, K et L sont deux points tels que :

$$\overrightarrow{AK} = \overrightarrow{AC} + \overrightarrow{AB}$$
 et $\overrightarrow{AL} = \overrightarrow{AC} - \overrightarrow{AB}$

1. Construire les points K et L.

- 2. Montrer que C est le milieu de [LK].
- 3. Montrer que les vecteurs \overrightarrow{LK} et \overrightarrow{AB} sont colinéaires.

Exercice 4 (6 points)

Soit l'application f définie par : f(x) = 3 - 2x

- 1. Donner la nature de f puis préciser son coefficient.
- 2. a/ Calculer f(0), f(1) et f(2).
 - b/ Tracer Δ la représentation graphique de f dans un repère (O, I, J).
- 3. Résoudre graphiquement puis par le calcul l'inéquation suivante : $\frac{f(x)}{f(3)} > -1$

Lycée Remada Tataouine

Année Scolaire : 2017 - 2018

Date: Mardi 10 Avril 2018

 $\hbox{Professeur}:\ M^{\scriptscriptstyle R}\ HA{\rm MDI}\ {\rm ZANTOUR}$

CLASSE: $1^{\text{ère}} S_3$

Durée: 45 minutes

Devoir de contrôle N°4

MATHÉMATIQUES

Exercice 1 (4 points)

Pour chacune des questions suivantes une seule réponse est exacte, cocher la bonne case.

Questions	Réponses
1. L'ensemble des solutions dans $\mathbb R$ de l'inéquation :	\square] $-\infty$;8]
$2x \le 10$ est égal à	\square] $-\infty$; 10]
	\square] $-\infty$; 5]
2. On munit la droite Δ du repère (O, I)	□ sont opposés
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	□ sont égaux
Les vecteurs \overrightarrow{BO} et \overrightarrow{AO}	□ sont non colinéaires
3. Soit l'application affine f définie par :	$\square A(0;1)$
$f(x) = \frac{-9 + 2x}{9}$	\square $B(9;1)$
La représentation graphique de f passe par le point	\square $C(1;9)$
4. La représentation graphique d'une application affine	☐ une demi-droite
définie sur l'intervalle $[-5; +\infty[$ est	\Box un segment de droite
	☐ une droite

Exercice 2 (5 points)

Pour tout nombre réel x, on donne l'expression :

$$A(x) = 6 - 5x - 6x^2$$

- 1. a/ Vérifier que l'on a : A(x) = (-3x + 2)(2x + 3)
 - b/ Résoudre dans \mathbb{R} l'équation : A(x) = 0.
- 2. Dresser un tableau de signe pour A(x) puis déduire l'ensemble des solutions dans \mathbb{R} de l'inéquation : $A(x) \leq 0$.

Exercice 3 (5 points)

Soit ABC un triangle quel conque, K et L sont deux points tels que :

$$\overrightarrow{AK} = \overrightarrow{AC} + \overrightarrow{AB}$$
 et $\overrightarrow{AL} = \overrightarrow{AC} - \overrightarrow{AB}$

- 1. Construire les points K et L.
- 2. Montrer que C est le milieu de [LK].
- 3. Montrer que les vecteurs \overrightarrow{LK} et \overrightarrow{AB} sont colinéaires.

Exercice 4 (6 points)

Soit l'application f définie par : $f(x) = 2\,x - 5$

- 1. Donner la nature de f puis préciser son coefficient.
- 2. a/ Calculer f(0), f(1) et f(3).
 - b/ Tracer Δ la représentation graphique de f dans un repère (O, I, J).
- 3. Résoudre graphiquement puis par le calcul l'inéquation suivante : $\frac{f(x)}{f(2)} \leqslant -1$