Lycée Hédi Chaker Sfax		
Devoir de synthèse N°2	Mars 2012	Section : 2éme ; Sc
EPREUVE : SCIENCES PHYSIQUES	DUREE : 2 heures	Mr. Abdmouleh Nabil

CHIMIE (8 points)

Exercice n°1 (4, 25 points)

On donne: $M_{Fe} = 56 \text{ g. mol}^{-1}$, $M_{Cl} = 35.5 \text{ g. mol}^{-1}$ $M_{H} = 1 \text{ g. mol}^{-1}$ $M_{O} = 16 \text{ g. mol}^{-1}$

On dissout dans l'eau une masse m = 2.6 g chlorure de fer III de formule chimique FeCl₃. On obtient une solution (S₁) de volume V₁ = 250 mL et de concentration molaire C₁.

- $1^{\circ}/\;$ Ecrire l'équation chimique de dissociation ionique de FeCl_3 dans l'eau.
- 2°/ Déterminer la valeur de la concentration C₁. En déduire la concentration molaire de l'ion fer III et celle de l'ion chlore.
- 3°/ A 25 mL de la solution (S₁), on ajoute 75 mL d'une solution aqueuse (S₂) d'hydroxyde de sodium de formule chimique NaOH et de concentration molaire C₂ = 4,8 . 10⁻² mol. L⁻¹. Il se produit une réaction de précipitation supposé totale.
 - a°/ Ecrire l'équation chimique de la réaction de précipitation supposée totale. Donner le nom et la couleur du précipité obtenu.
 - b°/ Montrer que les ions fer III sont en excès et calculer la masse m₀ du précipité obtenu.
 - c°/ Quel volume minimal de la solution (S₂) doit-on ajouter pour précipiter tous les ions fer III.

Exercice n°2 (3,75 points)

On donne : $M_{Fe} = 56 \text{ g. mol}^{-1}$, $M_{Cl} = 35.5 \text{ g. mol}^{-1}$

La solubilité du chlorure de fer II à la température T est s = 0,2mol. L⁻¹.

On verse dans l'eau une masse m = 7,62 g de chlorure de fer II de formule chimique FeCl₂. On obtient une solution (S) de volume V = 250 mL.

- 1°/ Donner la définition de la solubilité s d'un électrolyte.
- 2°/

3°/

a°/

- a°/ Calculer la concentration molaire C de la solution (S).
- b°/ Montrer que la solution (S) est saturée avec dépôt et calculer la masse FeCl₂ non dissout.

Ecrire l'équation chimique de la dissociation de FeCl₂dans l'eau sachant qu'il se produit

les ions Fe²⁺ et Cl⁻.

- b°/ Déterminer leurs concentrations
- 4° / Quel volume d'eau minimal V_0 doit-on ajouté à (S) pour avoir une solution saturé sans dépôt.

PHYSIQUE (12 points)

Exercice n°1 (8 points) On donne : $\|\vec{g}\| = 10 \text{ N. Kg}^{-1}$

Le système mécanique représenté sur la figure-1-est constitué par un solide (S) de masse m = 250 g et un ressort (R)à spires non jointives de raideur K = 25 N. m^{-1} . L'ensemble est placé sur un plan

incliné par rapport à l'horizontal d'angle α tels que $\sin \alpha = 0.8$ et $\cos \alpha = 0.6$. Le système à étudié est en équilibre par apport à un repère $R(0,\vec{i},\vec{j})$ et le ressort (R) s'allonge de $\Delta l = 5$ cm.

Le contact solide-plan incliné se fait avec frottement équivalent à une force \vec{f} parallèle à l'axe (x'x).

- 1°/ Quelles sont les forces qui s'appliquent sur le solide (S)?
- 2°/ Reproduire le système de la figure-1- et représenter les forces qui s'exercent sur(*S*).
- 3° / Ecrire la condition d'équilibre de(S).

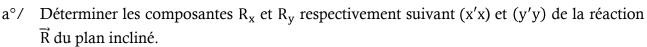


Figure-1-

- b°/ En déduire la valeur de la force \vec{f} et celle de \vec{R} .
- c°/ Déterminer l'angle β que fait \vec{R} avec l'axe (y'y)

Exercice n°2 (4 points)

On donne : $\|\vec{g}\| = 10 \text{ N. Kg}^{-1}$

On considère le système physique formé par un fil inextensible et un solide (S) de masse m=160 g. A l'aide d'une force \vec{F} horizontale comme le montre la figure-2-, le fil s'incline par rapport à la verticale d'un angle α tels que $\sin \alpha = 0.6$ et $\cos \alpha = 0.8$. Le solide (S) est en équilibre par apport à un repère $R(0,\vec{l},\vec{j})$.

- 1°/ Reproduire la figure-2- et représenter la tension \vec{T} du fil et le poids \vec{P} du solide (S).
- 2°/ Ecrire la condition d'équilibre du solide (S).
- 3° / Calculer la valeur de la force \vec{F}

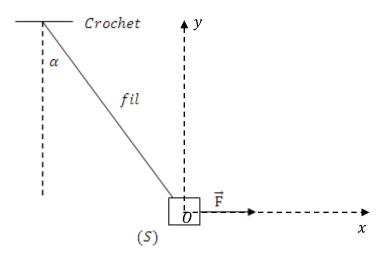


Figure-2-