Lycée secondaire Thala

Prof : khedimi

Devoir de contrôle N°3 Science Physique

Niveau: 2^{eme}SC

Durée : 1 heure

Le 16/03/2018

CHIMIE (8 points)

Exercice n°1 (2,75 points)

On donne: en g.mol $^{-1}$ M (PbCl $_2$) = 278

PbCl₂ est un électrolyte fort, sa solubilité $s = 1,6.10^{-2} \text{ mol L}^{-1}$

On introduit 16 g de PbCl₂ dans l'eau pour obtenir 100ml d'une solution (S₁).

- 1°) Donner le nom de cet électrolyte. (0,25)
- 2°)Montrer que l'électrolyte ne se dissout pas entièrement. (0,75)
- 3°) Ecrire l'équation de dissociation ionique de PbCl₂ dans l'eau. (0,5)
- 4°) Déterminer la molarité de chacun des ions plomb et des ions Cl dans la solution (S₁) (0,75)
- 5°) Quel volume d'eau faut- il ajouter à cette solution pour obtenir une solution juste saturée. (0,5)

Exercice n°2 (5,25 points)

On donne : $Cu = 63.5 \text{ g.mol}^{-1}$; $P = 31 \text{ g.mol}^{-1}$; $Ag = 108 \text{ g.mol}^{-1}$; $O = 16 \text{ g.mol}^{-1}$;

On dissout dans l'eau une masse m_0 de phosphate de cuivre II de formule chimique $Cu_3(PO_4)_2$.

On obtient une solution (S_1) de volume V = 200ml et de concentration molaire C_1 . On divise la Solution (S_1) en deux parties égales de volume $V_1 = 100 \, ml$.

- 1° / a°/ Ecrire l'équation chimique de dissociation ionique de $Cu_3(PO_4)_2$ dans l'eau . (0,5)
 - b°/ Exprimer la concentration molaire de chaque ion présent dans (S_1) en fonction de C_1 (0,5)
- 2° / Sur un volume $V_1 = 100$ ml de la solution (S_1) , on ajoute un excès d'une solution aqueuse
 - (S₂) de nitrate d'argent de formule chimique AgNO₃. Il se produit un précipité masse m=8,38g.
 - a°/ Ecrire l'équation chimique de la réaction de précipitation . Donner le nom et la couleur du précipité obtenu . (1,25)
 - b° / Calculer la quantité de matiére d'ions phosphate qui a précipité . (0,5)
 - C°/ En déduire :
 - * La valeur de la concentration molaire C_1 . (0,5)

*La masse m_0 de phosphate de cuivre II dissout dans le volume V . (0.5)

3°/ On dissout dans un autre volume $V_1 = 100 \text{ ml}$ de la solution (S_1), une quantité, de matière n_0 de chlorure de cuivre II de formule chimique $CuCl_2$. On suppose qu'au cours de cette dissolution, le volume reste constant.

- a°/ Ecrire l'équation chimique de dissociation ionique de CuCl₂ dans l'eau . (0,5)
- b°/ Montrer que dans (S) on a : $[Cu^{2+}] = 3C_1 + n_0/V_1$. (0,5)
- C° / En déduire la valeur de n_0 sachant que [Cu^{2+}] = 0,5 mol L^{-1} (0,5)

PHYSIQUE

Exercice n°1

est horizontal.

I/
Le solide (S) de masse **m** = **500 g** est suspendu en un point (A)
d'un support par l'intermédiaire d'un fil (f).
Un ressort (R) de raideur **K** = **80 N** · **m**⁻¹, est accroché au solide
(S) par l'une de ses extrémité, l'autre extrémité est fixée
Horizontalement à un crochet au point (B) (voir fig -1)
A l'équilibre le ressort s'allonge de **DL** = **5** cm et son axe

1°/ Faire le bilan des forces extérieures agissant sur (S).(1)

Les représenter sur la fig -1 (page annexe)

- 2°/ Ecrire la condition d'équilibre du solide (S). (0,5)
- 3°/ Déterminer la valeur de la tension du ressort \overrightarrow{T}_R appliquée sur le solide (S). (0,5)
- 4°/ Montrer que l'angle α vérifie l'expression \mathbf{tg} α = \mathbf{K} . $\mathbf{DL}/\|\mathbf{P}\|$. En déduire sa valeur . (1,5)
- 5° / Déterminer les caractéristiques de la tension T_f qu'exerce le fil sur le solide (S). (1)

II /

Seul le solide (S) est maintenant posé sur un plan

Incliné (P) d'un angle \mathcal{B} =30° par rapport à l'horizontale

(Voir fig 2)

1°/ a°/Si le plan est incliné (P) ne présente pas de frottement,

Montrer que (S) ne peut pas rester en equilibre (voir fig 2 page annexe) (1)

b° / Déterminer la composante du poids de (S) qui tend à faire

glisser le solide (S) le long du plan incliné . (1)

2°/ En réalité le plan est rugueux (les frottement ne sont pas négligeable) et le solide (S) est en équilibre.

 a° / Calculer les valeurs des composantes R_{x} et R_{y} de la réaction du plan dans

le repére (O,x,y) (voir fig 2 page annexe) (1)

b°/ En déduire la valeur de la force de frottement . (0,5)

Exercice n° 2

Une tige AB de masse m = 600 g et de longueur L = 1,2 m est mobile autour d'un axe fixe (D)

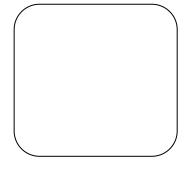
Passant par O et perpendiculaire au plan de la figure ci –contre

On donne OA = L/6.

La tige AB fait un angle α avec l'horizontale . On exerce

en B une force \vec{F} horizontale et de valeur $||\vec{F}|| = 4 N$

on donne sin $\alpha = 0.6$ et cos $\alpha = 0.8$


1°/ Faire le bilan des forces extérieures qui s'exercent sur la

Tige AB . Les représenter sur la fig- 4 – (page annexe) (1)

2°/ Calculer le moment par rapport à l'axe(D) de chacune des forces agissant sur la tige (1)

3°/Montrer que la tige ne peut pas se maintenir en équilibre dans cette position (1)

 4° / Justifier alors le sens de rotation de la tige (1)

	Page annexe	
Nom et prénom		
Fig1		<u>Fig2</u>
Fig3		<u>Fig4</u>