DIRECTION REGIONALE

DEVOIR DE SYNTHESE N°1

Classe : 2sc1

DE SOUSSE

SCIENCES PHYSIQUES

Date : 29/12/2016

LYCEE : KHAWARIZMI M'SAKEN

durée : 2 heures

Prof : FRIOUI. E

CHIMIE

Exercice N°1(3.25 pts)

On considère la liste des éléments chimiques suivants :

 ${}^{12}_{6}C$, ${}^{1}_{1}H$, ${}^{1}_{1}X$, ${}^{24}_{12}Mg$, ${}^{13}_{6}Y$, ${}^{16}_{8}O$

1) -a) Combien d'éléments chimique a-t-on dans cette liste ? Justifier. 0.5

-b) Donner la composition de l'atome d'oxygène. 0.5

-c) Déduire la réparation électronique de cette atome. 0.5

2) -a) Enoncer la loi de l'octet. 0.25

-b) Quelle est l'entité chimique la plus stable : l'atome ou son ion correspondant ? 0.5

3) l'un de ces atomes qu'on note X réagit avec le dioxygène en donnant un composé ionique qu'on note B. au cours de cette réaction l'atome X donne un ion X^{2+} qui a la même structure électronique que l'ion oxygène.

a- Donner la structure électronique de l'ion oxygène. 0.25

b- Déduire le symbole de l'ion X^{2+} . 0.5

c- Ecrire la formule statistique du composé **B**. 0.25

Exercice N°2 (4.75 pts)

On donne les formules électroniques des atomes suivants :

 $C: (K)^2$, $Cl: (K)^2(L)^8(M)^7$, $H: (K)^1$, $N: (K)^2(L)^5$, $O: (K)^2(L)^6$

1) a- Donner le schéma de Lewis des atomes suivants : N, H et Cl. 0.5

b- Définir la liaison covalente. 0.25

c- Donner le nombre de liaisons covalentes simples que peut établir chacun des atomes **N** et **Cl**.

2) La molécule d'éthylamine est constituée d'un atome de carbone, de cinq atomes d'hydrogène et d'un atome d'azote. La molécule de di-chlore est constituée de deux atomes de chlore.

a- Donner le nombre des électrons de valence pour chaque molécule. 0.5

b- Quelle est la différence entre un doublet liant et un doublet non liant? 0.25

PROF: EZZEDDINE FRIOUI CLASSE 2SC1 2016/2017 LYCÉE: KHAWARIZMI M'SAKEN

c- Déduire le schéma de Lewis de chacune de ces deux molécules. 0.75

3) On donne l'échelle d'électronégativité suivante :

H C N O Cl F Electronégativité croissante

a- Définir l'électronégativité d'un élément chimique.

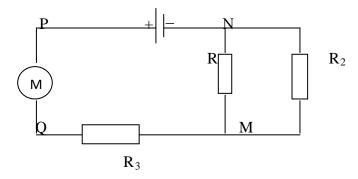
0.25

b- On considère la liaison entre les atomes N et H et la liaison entre les deux atomes de chlore dans les deux molécules précédentes.

b₁- dire le quel des deux liaisons est **symétrique** et le quel est **dissymétrique. 0.5**

b₂- représenter les fractions de charges sur chacun des deux atomes liés. 0.5

c- On considère maintenant la liaison entre l'atome de carbone et l'atome d'hydrogène et la liaison entre l'atome d'azote et l'atome d'hydrogène. La quelle des deux liaisons est plus **polarisée** ? Justifier.


0.5

PHYSIQUE (12 points)

Exercice 1 (8pts)

On considère le circuit électrique, représenté par la figure suivante, qui comporte : - Un générateur de fém. $\mathbf{E} = \mathbf{40} \, \mathbf{V}$ et de résistance interne $\mathbf{r} = \mathbf{1} \, \Omega$.

- Un moteur de f.c.é.m. E' et de résistance interne r'.
- Trois résistors \mathbf{R}_1 , \mathbf{R}_2 et \mathbf{R}_3 avec $U_{QM} = \mathbf{14}$, $\mathbf{4}$ V

1- Sachant qu'on régime permanant l'énergie thermique dissipée dans R_1 pendant $\Delta t = 2$ mn est :

 $W_{R1} = 1728$ J lorsqu'il est parcouru par un courant d'intensité $I_1 = 1, 2$ A.

a-Calculer la résistance \mathbf{R}_1 .

b- Déduire la tension U_{MN}.

2- La tension aux bornes du moteur étant $U_{PQ} = 11$, 8 V.

PROF : EZZEDDINE FRIOUI CLASSE 2SC1 2016/2017 LYCÉE : KHAWARIZMI M'SAKEN

Déterminer :

- a- La tension U_{PN} aux bornes du générateur.
- b- L'intensité du courant *I* débité par le générateur.
- c- La résistance R₃.
- 3- Déterminer la résistance R_2 .
- 4- Calculer la résistance équivalente à R₁, R₂ et R₃.
- 5- Le moteur développe une puissance mécanique $Pm\acute{e}c = 18 W$.
 - a- Déterminer E' et r'.
 - b- Calculer le rendement du moteur.
- 6- Le moteur est maintenant calé.
 - a- Quelle est la nouvelle intensité de courant qui traverse le circuit.
 - b- Vérifiez le principe de la conservation de l'énergie électrique dans ce circuit.

Exercice N°2(4pts)

On considère un circuit formé d'un générateur de f.é.m. E=30V et de résistance interne $r=1\Omega$ branché avec un moteur de f.c.é.m. E'=10V et résistance interne $r'=5\Omega$.

- 1) faire le schéma du circuit en représentant la tension aux bornes de chaque dipôle par un flèche.
- 2) En appliquant la loi de Pouillet, calculer l'intensité de courant I dans ce circuit.
- 3) Calculer la tension aux bornes de chaque dipôle.
- 4) La tension maximale que peut supporter le moteur sans dommage est égale à 20V.

Le montage précédent est-il convenable ? Si non quel doit être la valeur de la résistance **R** qu'on doit incorporer en série dans le circuit précédent pour que le moteur fonctionne normalement ?

PROF: EZZEDDINE FRIOUI CLASSE 2SC1 2016/2017 LYCÉE: KHAWARIZMI M'SAKEN