LYCÉE SECONDAIRE BEN AOUN.	DEVOII DE CONTRO		MATIERE : SCIENCES PHYSIQUES.
PROF: MR YOUSFI KAMEL.	04 / 11 / 2014	Durée : 1H	2 SC ₁₊₂

* Le sujet comporte 2 exercices de chimie et 2 exercices de physique.

Indication et consignes générales

- * Une copie propre est exigée.
- * On exige une expression littérale avant chaque application numérique.

CHIMIE: (8 points)

On donne : La charge élémentaire : $e = 1,6.10^{-19}$ C , La masse d'un nucléon : $m_{neutron} \approx m_{proton} = 1,67.10^{-27}$ Kg

Exercice $N^{\circ}1$: (2 pts)

Le chlore naturel (Cl : Z = 17) est constitué d' un mélange de deux isotopes. Le premier isotope contient 18 neutrons, le deuxième contient 20 neutrons.

- 1) Donner la représentation symbolique de ces deux isotopes.
- 2) Les proportions relatives de ces deux isotopes sont : **75,5** % pour le premier isotope et **24,5** % pour le deuxième. Calculer la masse molaire atomique du chlore.

Exercice $N^{\circ}2$: (6 pts)

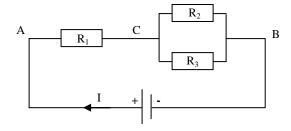
Un atome de phosphore de symbole P possède 31 nucléons, la charge de son noyau est $Q_{noyau} = 24.10^{-19}$ C

1)

- a) Calculer le nombre de charge **Z** du phosphore.
- b) Calculer le nombre des neutrons N du phosphore.
- c) Donner le symbole du noyau.

2)

- a) Ecrire la formule électronique de l'atome du phosphore.
- b) Combien d'électron possède cet atome ? Qu'appelle-t-on les électrons de la couche externe ?
- c) Quel ion simple peut donner l'atome de phosphore ?


3)

- a) Calculer la masse d'un atome de phosphore (m $_{atome} \approx m_{noyau}$).
- b) Quel est le nombre d'atomes présents dans un échantillon de phosphore de masse : $\mathbf{m} = 3.1 \ 10^{-3} \ \mathrm{kg}$

PHYSIQUE: (12 points)

Exercice N°1: (5 pts)

Trois résistors de résistances respectives. $R_1 = 56\Omega$; $R_2 = 60 \Omega$ et $R_3 = 40\Omega$. Sont montés comme l'indique la figure suivante :

- 1) Déterminer la résistance R' de l'association des résistors R_2 et R_3 .
- 2) Calculer $R_{\text{\'eq}}$, la résistance équivalente du dipôle (AB).
- 3) Sachant que le générateur impose une tension U = 12 V.
 - a) Déterminer l'intensité I.
 - b) Calculer la tension U_{AC} aux bornes de R_1 .
 - c) Déduire la valeur de la tension U_{CB}.

Exercice N°2: (7 pts)

On mesure l'intensité I qui traverse un conducteur ohmique pour différentes valeurs de la tension U_{AB} appliquée à ses bornes. On obtient le tableau suivant :

I (10 ⁻³ A)	0	20	40	50	60
$\mathbf{U}_{\mathbf{AB}}\left(\mathbf{V}\right)$	0	1	2	2.5	3

1)

- a) Tracer la caractéristique : U = f(I) du dipôle conducteur ohmique sur la figure ci contre :
- b) Choisir, les réponses juste : Le conducteur ohmique est un dipôle : Linéaire, Actif, Non linéaire, Passif.
- c) Déterminer la valeur de la résistance **R** du conducteur ohmique.
- d) Ecrire la loi d'Ohm relative à ce conducteur ohmique.

2)

- a) Donner l'expression de la puissance P consommée par ce conducteur ohmique, traversé par un courant d'intensité I.
- b) Ce dipôle transforme toute l'énergie électrique qu'il reçoit en chaleur.
 - i) Qu'appelle-t-on ce phénomène ?
 - ii) Calculer en Joule l'énergie thermique produite par ce dipôle en **1H 20 min** s'il est traversé par un courant d'intensité **I = 0.02A**.
- 3) Cette résistance présente des anneaux colorés, Dessiner cette résistance et indiquer dans l'ordre les couleurs des anneaux. On donne les codes couleurs :

Noir (0), Marron (1), Rouge (2), Oranger (3), Jaune (4) Vert (5), Bleu (6), Violet (7), Gris (8), Blanc (9).

× ------

V)				Г														1
				1														
																		1
																		1
																		1
	П																	1
																		1
																		1
	П																	1
																		1
	Ħ																	1
																		1
																		1
																		1
																		1
																		1
																		1
																		1
		\neg				-						\neg	\neg	\neg				1

Nom:
Prénom:
Classe:
No ·

Tolérance

Le conducteur ohmique :