Lycée

Chebbi

Devoir de contrôle n°1 Sciences physiques

Prof:K,ATEF

2SC:1,2

Exercice n°1 (4points)

1) Compléter le tableau suivante

Symbole de	С	Al		
l'atome				
\mathcal{Z}			6	
Я	13		12	
${\mathcal N}$	7	14		17
Symbole du				16S
noyau				
Formule		$(K)^2(L)^8(\mathcal{M})^3$		
électronique				

- protons.
- a) Cette entité est-elle un atome ou un ion? Justifier.
- 6) Identifier l'élément en question à partir du tableau.
- c) Donner le symbole de cette entité X.
- d) Donner la structure électronique de X.

Exercice n ° 2 : (4points)

L'ion magnésium Mg²⁺ possède 10 électrons et 12 neutrons.

- 1) Calculer la charge du noyau de l'ion magnésium. Déduire, en le justifiant, celle de l'atome correspondant.
- 2) Déterminer le numéro atomique de l'élément magnésium.
- 3) Déterminer le nombre de masse de cet élément.
- 4) Donner la représentation symbolique du noyau de l'élément magnésium.
- 5) Calculer la masse d'une mole d'atome de magnésium.
- 6) Sachant que l'élément cuivre a deux isotopes $^{63}_{29}Cu$ et $^{65}_{29}Cu$ et sa masse Molaire $\mathcal{M}=63,5$ g.mol⁻¹
- a) Définir les isotopes d'un élément chimique.
- b) Calculer les pourcentages massiques de chaque isotopes.

On donne: $e = 1,6.10^{-19} C$; $m_p = 1,67.10^{-24} g$ et $\mathcal{N} = 6.02.10^{-23}$.

.5 A_1

A2B

 A_1B

0.5 A_1 0.5

0.25

0.25 A_2B

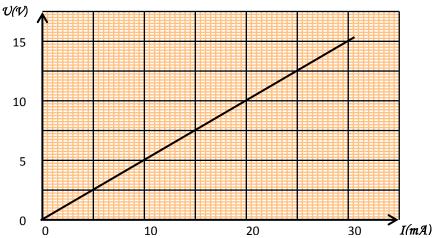
0.5 A_2B

0.5

0.5 A_2B

0.5

0.5 A_2B

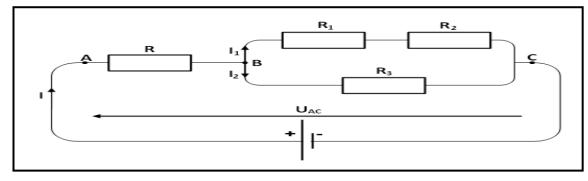

0.5 $\mathcal{A}_2\mathcal{B}$

1 C

Exercice nº 1: (6points)

On a représenté sur le graphique ci-après la caractéristique intensité-tension d'un dipôle résistor, tracée lors d'une séance de travaux pratiques.

- 1°) Donner le schéma du montage permettant de tracer cette caractéristique.
- 2°) Préciser si ce dipôle est actif ou passif. Justifier.
- 3°) Déterminer graphiquement la valeur de la grandeur qui caractérise ce dipôle.
- 4°) a) Enoncer la loi d'Ohm relative à un dipôle résistor.
- 6) Sachant que la tension imposée aux bornes de ce dipôle est U = 15V. calculer valeur de l'intensité du courant qui le traverse.
- 5°) Retrouver cette valeur graphiquement.
- 6) Calculer la puissance et l'énergie électrique consommée par ce récepteur pendant 10 minutes de fonctionnement en joule et en KWh.
- 7) En quelle forme d'énergie, ce résistor transforme-t-il l'énergie électrique qu'il consomme ?



Exercice n°2: (6points)

Soit le circuit électrique suivant :

On donne I=0,8 A et $R_3=30$ Ω . La résistance équivalente du dipôle AC est $R_{\acute{e}q}=35$ Ω .

- 1) Rappeler la loi d'Ohm relative à un conducteur ohmique.
- 2) Déterminer la tension \mathcal{U}_{AC} .
- 3) Sachant que $\mathcal{U}_{AB} = 18,4 \, \mathcal{V}$, déterminer la résistance \mathcal{R} .
- 4) Déterminer la tension $\mathcal{U}_{\mathcal{BC}}$.
- 5) Déterminer donc la valeur de l'intensité du courant I_2 traversant le résistor R_3
- 6) Déduire la valeur de l'intensité du courant I_1 en précisant la loi utilisée.
- 7) Sachant que $\mathcal{R}_1 = 12 \Omega$, déterminer \mathcal{R}_2 .

0.5 A₂
1 B
1 A₂B
1 A₂B
0.5 A₂B

0.5

0.5

1.5

0.5

0.5

1

1

0.5

 A_2B

 A_2B

A2

 \boldsymbol{C}

 A_2B

 A_2

 $0.5 \begin{array}{|c|c|c|} A_2B \\ A_2B \end{array}$

1.5

: