STORESTOR	<u>Lycée L'aouina</u>	<u>Devoir de Synthése N° 1</u>	$3 \ Sc : 3 \ M_1$	
H POPOBER		ananananananananananananananananananan	2020/2021	

<u>CHIMIE</u>: (9 points) : On donne : $M(H) = 1 \text{ g.mol}^{-1}$, $M(C) = 12 \text{ g.mol}^{-1}$

EXERCICE Nº1 (5,5 points)

1°/ Nommer les composés organiques suivants et **préciser** leurs familles :

(A) :
$$CH_3$$
— CH_2 — CH — CH_3 (B): CH_3 — CH_2 — CH_2 — CH_2 — CH_3

- 2°/- Ecrire l'équation de la réaction qui permet d'obtenir (C) à partir de (A). Préciser son type
- 3°/ **Donner** les formules semi-développées des composés suivants :
- 2,2-diméthylbutane ; 3,4-diméthylpent-2-ène
- 4°/ la combustion complète de **0,2** mole d' un alcane X produit **35,2** g de dioxyde de carbone CO₂.
 - a- **Ecrire** l'équation de la réaction de combustion d'un alcane.
 - b- **Montrer** que l'alcane X renferme 4 atomes de carbone dans sa molécule.
 - c- **En déduire** sa formule brute et écrire la formule semi-développée de chacun de ses isomères en précisant leurs noms ..

EXERCICE N°2 (3,5 points)

La gravure à l'eau forte

La gravure à l'eau forte est une méthode de reproduction ancienne. L'artiste dessine à l'aide d'une pointe en métal sur une plaque de cuivre recouverte d'un vernis protecteur. Lorsque la gravure est terminée, la plaque est plongée dans une solution d'acide nitrique, $(H_3O^+ + NO_3^-)$ et la solution de vient bleue. La plaque est ensuite rincée à l'eau et le vernis restant est enlevé la gravure est terminée.

D'après Sciences et vie (1994)

Questions:

- 1/a-Expliquer l'apparition de la coloration bleue de la solution
 - b- Préciser le rôle joué par le cuivre . A t-il été oxydé ou réduit ?
- c- Ecrire l'équation de la demi- réaction correspondante.
- 2/a- **Préciser** le rôle joué par les ions nitrate **NO₃**. Ont t-ils été oxydés ou réduits ?

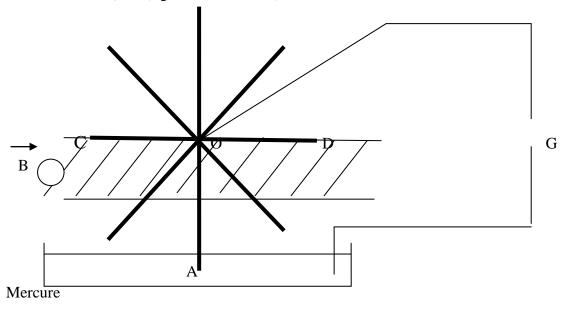
- b- L'espèce conjuguée de l'ion nitrate est le monoxyde d'azote gazeux **NO**. **Ecrire** l'équation de la demi-réaction correspondante.
- 3-En déduire l'équation de la réaction ayant lieu entre le cuivre et l'acide nitrique.
- 4- **Dire** pourquoi doit –on utiliser une solution d'acide nitrique et non une solution de nitrate de potassium $(K^++NO_3^-)$

PHYSIQUE: (11 points)

EXERCICE N°1 (7,5 points)

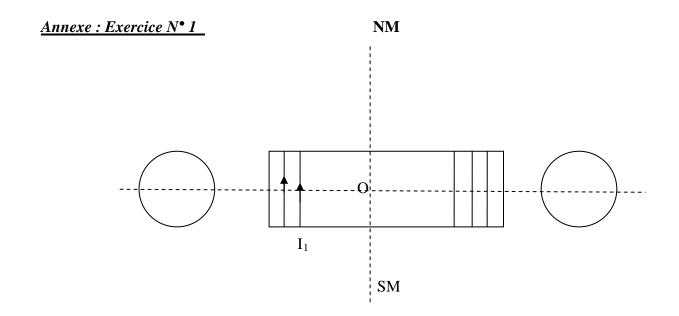
On donne : La composante horizontale du champ magnétique terrestre $\| \overrightarrow{B}_H \| = 2.10^{-5} \text{ T}$ et on prendra $4\pi = 12.5$

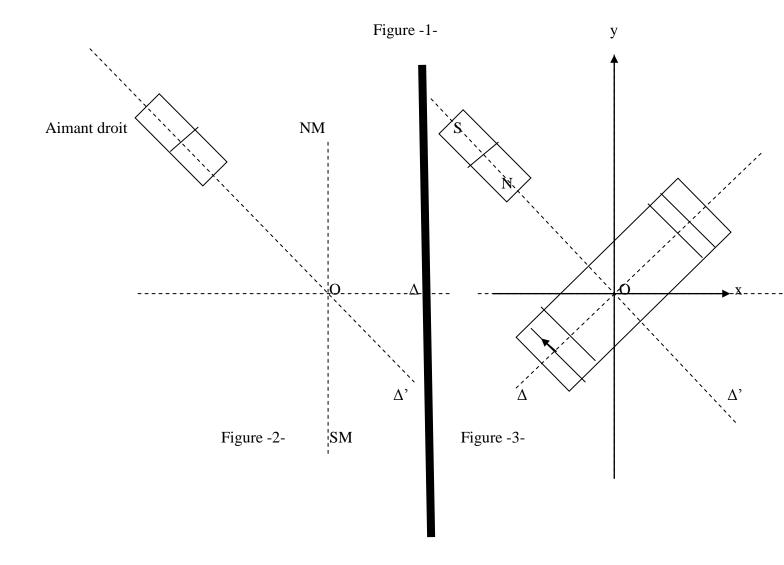
A/- On considère un solénoïde (S), d'axe (Δ) perpendiculaire au plan méridien magnétique, de longueur


L=0.5~m et comportant N=100~spires. Au centre O de (S), on place une petite aiguille aimantée sn mobile autour d'un axe vertical

- 1- En établissant dans (S) un courant d'intensité I_1 , l'aiguille aimanté \overline{sh} subit une déviation α_1 tel que $\sin(\alpha_1) = 0.6$ et $\cos(\alpha_1) = 0.8$
 - a- **Donner** les caractéristiques du vecteur champ magnétique B_{1S} crée par I_1 au point O. On énoncera la règle de l'observateur d'ampère.
 - b- Compléter la figure -1-:
 - ❖ En indiquant les faces de la bobine.
 - \bullet En représentant avec la même échelle \overrightarrow{B}_H et \overrightarrow{B}_{1S} au centre de (S) ainsi que l'aiguille sn.
 - c- **Calculer** l'intensité I_{1.}
- 2- a- Comment varie l'intensité | B_{1S}| du champ crée au centre de (S) en fonction du nombre de spire par unité de longueur
 - b- **En déduire** le nombre de spire par unit<u>é</u> de longueur que doit avoir un deuxième solénoïde (S') qui parcouru par I₁ y produit un champ B'_{1S} de valeur **3.10**⁻⁵T.
- B/ 1- **On annule le courant** dans (S) et on place un barreau aimanté (SN) d'axe magnétique (Δ ') horizontal et faisant un angle β avec le méridien magnétique ($\sin \beta = 0.6$; $\cos \beta = 0.8$). On remarque que l'aiguille aimantée sn s'oriente perpendiculairement au méridien magnétique.
 - a- **Indiquer** sur la figure -2- les pôles de l'aimant droit
 - b- **Représenter** sur la figure -2- avec la même échelle, les vecteurs B_H et B_a crée par (SN) au point O.
 - c- Calculer | B_a|.
 - 2- On fait tourner horizontalement le solénoïde (S) autour de son centre O de sorte à amener l'axe (Δ) perpendiculaire à (Δ ') et on fait parcourir (S) par un courant **d'intensité I= 0,24 A** (voir figure-3- à compléter).
 - a- **Déterminer** dans le repère (Ox,Oy), les composantes Bx et By du vecteur champ magnétique résultant au point O.
 - b- En déduire l'angle que fait l'aiguille sn avec le méridien magnétique.

EXERCICE $N^{\bullet}2:(3,5 \text{ points})$


Une roue, formée de 8 rayons de même longueur R et de masses négligeables, est mobile autour d'un axe (Δ) passant par son centre O et perpendiculairement au plan de la figure. Le rayon vertical OA de longueur **R=OA= 10cm** est parcouru par un courant d'intensité **I=8A**. La moitié supérieure de ce rayon est plongée dans un champ magnétique uniforme (partie hachurée) de vecteur B perpendiculaire au plan de la figure, **sortant** et de valeur $\| B \| = 0,1T$. (figure 4 ci- dessous)



- 1- **Préciser** le sens du courant et les pôles du générateur pour que la roue tourne dans le sens(+) indiqué sur la figure.
- 2- **Déterminer** la valeur de la force de Laplace qui s'exerce sur OA.
- 3- a- **Préciser** en quel point C ou D faut-il placer un corps (S) de masse m pour empêcher la roue de tourner. (Faire un schéma clair). Justifier.
 - b **Déterminer** la valeur de m.

FIN

PHYSIQUE: (11 points)

EXERCICE N°1 (7,5 points)

On donne : La composante horizontale du champ magnétique terrestre $\| \overline{B}_H \| = 2 \cdot 10^{-5} \text{ T}$ et on prendra $4\pi = 12.5$

A/- On considère un solénoïde (S), d'axe (Δ) perpendiculaire au plan méridien magnétique, de longueur

L=0.5~m et comportant N=100~spires. Au centre O de (S), on place une petite aiguille aimantée sh mobile autour d'un axe vertical

- 3- En établissant dans (S) un courant d'intensité I_1 , l'aiguille aimanté sh subit une déviation α_1 tel que $sin(\alpha_1) = 0.6$ et $cos(\alpha_1) = 0.8$
 - d- **Donner** les caractéristiques du vecteur champ magnétique B_{1S} crée par I_1 au point O. On énoncera la règle de l'observateur d'ampère.
 - e- Compléter la figure -1- :
 - ❖ En indiquant les faces de la bobine.
 - ❖ En représentant avec la même échelle B_H et B_{1S} au centre de (S) ainsi que l'aiguille sn.
 - f- Calculer l'intensité I_{1.}
- 4- a- Comment varie l'intensité $\| \overrightarrow{B}_{1S} \|$ du champ crée au centre de (S) en fonction du nombre de spire par unité de longueur
 - c- **En déduire** le nombre de spire par unit<u>é</u> de longueur que doit avoir un deuxième solénoïde (S') qui parcouru par I_1 y produit un champ B'_{1S} de valeur $3.10^{-5}T$.
- B/ 1- **On annule le courant** dans (S) et on place un barreau aimanté (SN) d'axe magnétique (Δ') horizontal et faisant un angle β avec le méridien magnétique (sin β =0,6; cos β =0,8). On remarque que l'aiguille aimantée sn s'oriente perpendiculairement au méridien magnétique.
 - d- **Indiquer** sur la figure -2- les pôles de l'aimant droit
 - e- **Représenter** sur la figure -2- avec la même échelle, les vecteurs B_H et B_a crée par (SN) au point O.
 - f- Calculer | Ba |.
 - 3- On fait tourner horizontalement le solénoïde (S) autour de son centre O de sorte à amener l'axe (Δ) perpendiculaire à (Δ ') et on fait parcourir (S) par un courant **d'intensité I= 0,24 A** (voir figure-3- à compléter).
 - c- **Déterminer** dans le repère (Ox,Oy), les composantes Bx et By du vecteur champ magnétique résultant au point O.
 - d- En déduire l'angle que fait l'aiguille sn avec le méridien magnétique.

