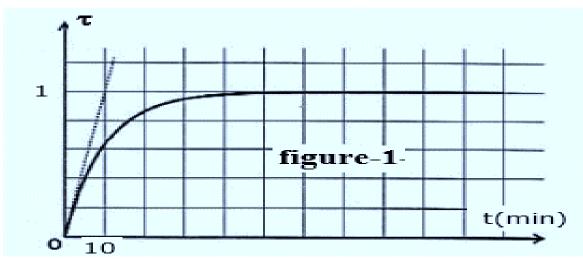
LycéeHamouda	Devoir de contrôle n: 1	PROF : Nefzilssam
Becha	sciences physiques	Date: 15-11-2021
2020 - 2021	Durée : 1 heure	Classes: 4 ^{ème} M ₁₋₂

Chimie: (7pts)

On prépare, dans un bécher, un volume $V_1 = 40$ mL d'une solution S, d'eau oxygénée H_2O_2 acidifiée de concentration $C_1=0,1$ mol.L⁻¹et dans un autre bécher, on place un volume $V_2 = 60$ mL d'une solution S_2 d'iodure de potassium KI de concentration $C_2=0,1$ mol.L⁻¹.

À la date t = 0s, on mélange les contenus des 2 béchers et on agite, la réaction lente qui se produit est d'équation :


$$H_2O_2 + 2H_3O^+ + 2I^- \rightarrow 4H_2O + I_2$$

-1-Pour suivre l'évolution de cette réaction on prépare des prélèvements identiques de volume $V_p=5\ mL$ chacun et on dose la quantité de H_2O_2 restante dans chaque prélèvement par une solution de permanganate de potassium $KMnO_4$ en milieu acide de concentration molaire $C=0,05\ mol.L^{-1}$. Soit V: le volume de la solution de $KMnO_4$ nécessaire pour obtenir l'équivalence. L'équation de la réaction de dosage rapide et totale s'écrit :

$$2 \text{ MnO}_4^- + 3 \text{ H}_2\text{O}_2 + 6 \text{ H}_3\text{O}^+ \rightarrow 2 \text{ Mn}^{2+} + 4 \text{ O}_2 + 12 \text{ H}_2\text{O}$$

-a- Représenter le dispositive du dosage.

- -b- Ecrire la relation d'équivalence et calculer la quantité de H_2O_2 présente dans un tube pour $V=2\ cm^3$
- -2- -a- Donner la composition initiale du mélange et dresser le tableau descriptive d'évolution de la reaction.
 - -b- Déterminer la valeur de $\mathbf{x}_{\mathbf{m}}$ et déduire le réactiflimitant.
- -3-On suit la variation dutauxd'avancement de la reaction aucours du temps ce qui nous donne lacourbede la **figure-1**-:

- -a- Préciseravec justification si lareaction esttotaleoulimitée.
- -b- determinerles quantités de matière de I_2 , H_2O_2 et $I^$ présentes dans le mélange a t_1 = 10min.
 - -4- -a- Rappeler la definition de la Vitesse volumique de la reaction.
- -b- Montrer que la Vitesse volumique peuts'écrire $\mathbf{v_v} = \mathbf{0.03} \cdot \frac{d\tau}{dt}$, donner savaleur a la date $\mathbf{t_1}$.

Physique: (13pts)

On considère le montage du circuit électrique schématisé par la figure-3- de la feuille annexe:

- Quatre dipôles D_1 , D_2 . D_3 et D_4 . (Chaque dipôle peut être soit un condensateur de capacité Cou un résistor de résistance R_i).
- Un générateur de tension idéal de tension de fem **E**.
- Un génerateur de courant.
- Quatre voltmètres numériques V₁; V₂, V₃ et V₄.
- Un milliampèremètre (mA).
- Deux interrupteurs K₁ et K₂.

Les deux voies Y₁ et Y₂représentent les entrées d'un oscilloscope bi courbe.

<u>Partie A :</u>

On ferme K_1 et on garde K_2 ouvert.

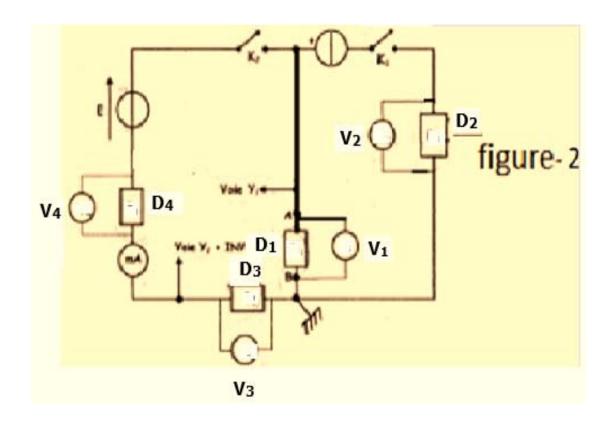
Pour identifier la nature exacte de ces deux dipôles électriques **D**₁ et **D**₂ on les branches en série avec un générateur de courant débitant un courant d'intensité constante I = 2mA.

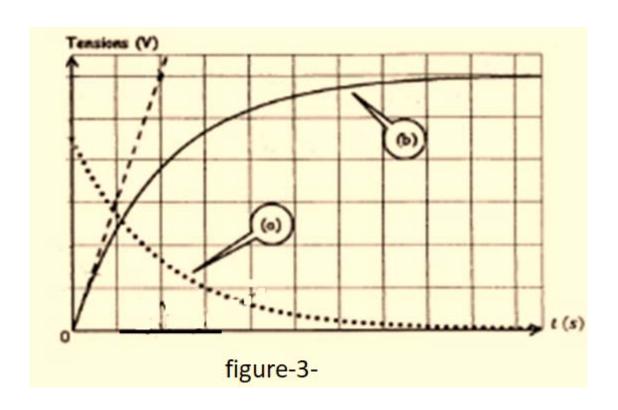
La fermeture du circuit étant prise comme origine du temps, le voltmètre (V2) branché aux bornes du dipôle **D**₂indique une valeur constante **16V**alors que (**V**₁) indique une valeur nulle.

- -1- -a- Justifier que le dipôle D₂ est un dipôle résistor
 - -b- En déduire la valeur de la résistance R₂ du dipôle D₂.
- -c- Le dipôle électrique **D**₁ est-il un condensateur initialement chargé ?
- -2-Apres une durée de temps $\Delta t = 16$ s de la réalisation de cette phase de

charge, les deux voltmetres (V_1) et (V_2) indiquent la mêmevaleur. Montrer que l'expression de la capacité Cest donnée par : $C = \frac{\Delta t}{R_2}$. La calculer.

Partie B:


On décharge totalement le condensateur. Al'instant de date to=0s pris comme origine du temps, on ferme K_2 et on garde K_1 ouvert.


Dés qu'on ferme K_2 , l'ampèremètre indique une intensité $i_0=2$,4 mA.

Apres une durée **\Delta t = 50 s**, le condensateur *est* totalement chargé, alors que :

- Le voltmetre (V₁) indique une tension U₁=12V.
- Les deux voltmetres V₃ et V₄ indiquent la même tension nulle.
 - -1- -a- Quelle estl'indication de l'ampèremètre après la durée **△t**? Justifier.
- -b- Préciser, enle justifiant, la nature exactedes deux dipôles D₃ et D₄.
- -2-Indiquer sur le schéma du circuit qui convient, les signes des charges électriques portées par les deux armatures A et B du condensateur, le sens du courant i(t) et le sens du déplacement des électrons.
- -3- -a- Etablir l'équation différentielle régissant les variations de la tension u_c(t) aux bornes du condensateur.
- -b- Vérifier que la tension $u_c(t) = E_c(1 e^{-\frac{t}{\tau}})$ estune solution de l'équation différentielle en précisant l'expression de la constante de temps τ.
- -4- -a- Quelle est la grandeur électrique visualisée sur chaque voie de l'oscilloscope.
- -b- Attribuer, en le justifiant, a chaque tension la courbe correspondante parmi les deux courbes (a) et (b) de la figure-4-.
 - -5-A partir des résultats expérimentaux, Déterminer
- -a- La valeur de la fem E du générateur et préciser la sensibilité verticale de l'oscilloscope.
- -b- La valeur de la constante de temps τ du dipôle RC avec R= R₃+ R₄ et préciser la <u>sensibilité horizontale</u> de l'oscilloscope.
 - -c- La valeur de la tension initiale aux bornes du résistor R₃.
 - -d- Les valeurs des deux résistances R₃ et R₄.

