Lycée Secondaire l'Excellence Bizerte 2019/2020

Devoir de Contrôle N° 2 Sciences Physique 3^{ème} année Math

Date: 30/01/2020 Durée: 2H Mr. Bayrak- dar Kamel

CHIMIE: (8 PTS)

Exercice 1: (4.5pts)

1) Compléter le tableau suivant : (le tableau est reproduit sur le page 4 « à remplir à la remettre avec la copie »).

Composé	Formule brute	Fonction chimique	Formule semi- développée	Nom
A	$C_4 H_{10} O$	Alcool secondaire		
В	C_4H_8O			2- méthylpropanal
С			$CH_3 - CH_2 - CH_2 - C$ OH	Acide butanoîque

- 2) L'oxydation ménagée A produit un composé D.
 - a) Donner la fonction chimique, la formule semi-développée, le nom et la formule brute de **D**.
 - **b)** Identifier parmi les composés **A**, **B** et **C**, l'isomère de **D** s'agit- il des isomères de chaîne, de Position ou de fonction.
- 3) Soit A un isomère de chaîne de l'alcool A

La déshydratation intermoléculaire, de l'alcool A_1 en présence de l'acide sulfurique à la température

 $T=140^{\circ}C$, ne peut produire qu'un seul composé organique E.

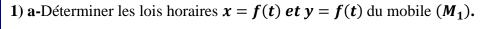
- a) Identifier en justifiant la réponse, la formule semi-développé, la classe et le nom de A_1
- Ecrire l'équation chimique de cette réaction et préciser la fonction chimique et le nom du composé
 E

EXERCICE N°2: (3.5 points)

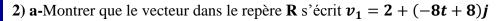
- 1) Par quelles réactions peut- on vérifier qu'une substance organique donnent les éléments chimiques :
 - Carbonne
 - Hydrogène
- 2) La combustion complète d'un échantillon de masse m=2,86g d'un composé organique A de formule $C_X H_y O_z$ nécessite un volume de dioxygène égale à 6,78L et dégage un gaz qui fait augmenter la masse du flacon laveur à l'eau de chaux de 8,8g.
 - a) Ecrire l'équation de la réaction en fonction X, Y, Z.
 - b) Déterminer la formule brute du composé A sachant que sa masse molaire moléculaire vaut $M = 286g. mol^{-1}$.
 - c) Peut-t-on le considérer comme étant un alcool. Justifier.

PHYSIQUES (12 pts)

Exercice 1: (6 pts)


On étudie le mouvement d'un mobile (M_1) dans un repère orthonormé R(0, i, j) lié à la terre.

Les distances sont mesurées en mètre et les durées en seconde.


On prendra $t \geq 0$.

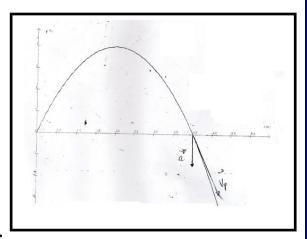
Le vecteur espace du mobile est $\mathbf{0}\mathbf{M}_1 = (2t)\mathbf{i} + \mathbf{y}(t)\mathbf{j}$.

L'équation de la trajectoire dans le repère **R** est $y = -x^2 + 4x$.

b-A quel instant t_p le mobile passe par te point **P** de coordonnées $x_p = 4$ **m**

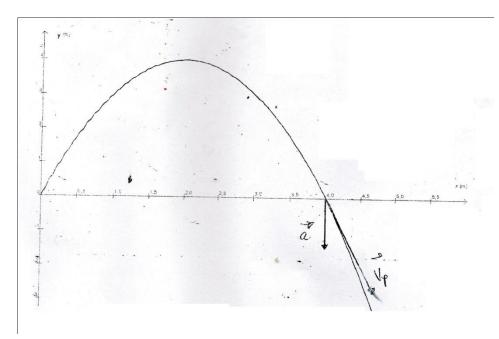
b- Déterminer les caractéristiques du vecteur vitesse v_p à l'instant t_p

3) a-Déterminer le vecteur accélération a du mobile


b- Sur la courbe de la figure 1, de la page4 « à remplir et a remettre avec la copie » représenter les vecteur v_s et a à l'instant t_n

c- Déduire à l'instant t_p les composantes normale a_N et tangentielle a_r de l'accélération ainsi que le rayon de courbure R_c de la trajectoire au point P.

Exercice 2: (6 pts)


Un automobile M_1 démarre à l'instant t = 0, du point O origine du repère (O, i), il décrit un trajet rectiligne OC en trois phases dans le sens de i.

- l^{èrc} phase OA, le mouvement est uniformément accéléré de durée 10s. Le compteur de la voiture indique 45km. h^{-1} en A «à la fia de- cette phase ».
- $2^{\text{ème}}$ phase AB, le mouvement est uniforme de longueur AB = 450m.
- 3^{ème} phase BC, de longueur 22,5 m, le mouvement est uniformément varié décéléré. L'automobile s'arrête au' point C au feu rouge
- I) Etude du mouvement M_1 dans la première phase OA.
 - **a-** Vérifier que la vitesse u_A de l'automobile M_1 au point **OA** est égale à **15m**. s^{-1} .
 - **b-** Déterminer l'accélération du mouvement sur le trajet **OA**.
 - **c-** Calculer la distance **OA**.
- 2) Etude du mouvement de M_1 dans la deuxième phase AB.
 - a- Ecrire l'équation horaire du mouvement de l'automobile M_1 sur le trajet AB en prenant la même origine espace O et de temps « t = 0 au démarrage de M_1 ».
 - **b-** Calculer la durée du parcours du trajet **AB**, en déduire l'instant t_B du passage de l'automobile M_1 par le point **B**.

- 3) Etude du mouvement de M_1 dans la troisième phase BC.
 - **a-** Déterminer l'accélération a_2 de l'automobile M_1 sur le trajet BC.
 - **b-** Déterminer l'instant t_c de l'arrêt de l'automobile M_1 au point C.
 - c- Ecrire l'équation horane numérique du mouvement de M_1 sur le trajet BC dans le repère (O, i) et l'origine de temps reste le même, au démarrage de M_1 en O)
- 4) Un automobile M_2 est en mouvement rectiligne uniforme dans le même repère (\mathbf{O},\mathbf{i}) avec une vitesse $v_1=17m.\,s^{-1}$ à l'instant $\mathbf{t}=\mathbf{0}$, l'automobile M_2 se trouve au point \mathbf{P} . Ce dernier dépasse l'automobile M_1 à l'instant $\mathbf{t}_{\mathbf{d}}=13\,\mathrm{s}$.
 - a- Déterminer l'abscisse x_d du dépassement de l'automobile M_1 par M_2 .
 - **b-** En déduire l'abscisse du point $\, {\bf P} , \,$ la position de $\, {\it M}_{\, 2} \,$ au démarrage de $\, {\it M}_{\, 1} . \,$

Composé	Formule brute	Fonction chimique	Formule semi- développée	Nom
A	$C_4 H_{10} O$	Alcool secondaire		
В	C_4H_8O			
				2- méthylpropanal
С			$CH_3 - CH_2 - CH_2 - C$ OH	Acide butanoîque

Bon Travail