Prof: Fehri Bechir

Produit scalaire dans l'espace Bac Math + Science 2019 - 2020

## Exercice 1:

Dans la figure ci-contre, ABCDEFGH est un cube.

On munit l'espace du repère orthonormé direct  $(A, \vec{i}, \vec{j}, \vec{k})$  tel que  $\overrightarrow{AB} = 3\vec{i}, \overrightarrow{AD} = 3\vec{j}$  et  $\overrightarrow{AE} = 3\vec{k}$ 

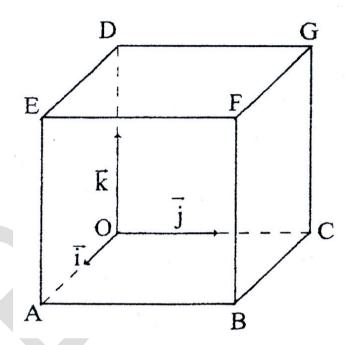
On désigne par P le plan (ACH) et par Q le plan (EGB).

- 1) a) Déterminer les composantes du vecteur  $\overrightarrow{AC} \wedge \overrightarrow{AH}$ 
  - b. Eu déduire l'aire du triangle ACH
- 2) Montrer que le plan P a pour équation cartésienne x y + z = 0



- 3) a) Déterminer les composantes du vecteur  $\overrightarrow{EG} \wedge \overrightarrow{EB}$
- b) En déduire que les plans P et Q sont parallèles et donner une équation cartésienne de Q.
- 4) Soit M(x, y, z) un point de l'espace n'appartenant pas à P.
- a) Montrer que le volume V du tétraèdre MACH est égal à  $\frac{3}{2}|x-y+z|$
- b) En déduire que pour tout point M du plan  $Q.V = \frac{9}{2}$
- c) Déterminer alors la distance du point B au plan P.

## Exercice 2:


Dans la figure ci-contre, OABCDEFG est un cube d'arête 2.

Munit l'espace du repère orthonormé direct  $(0, \vec{l}, \vec{j}, \vec{k})$ 

t T le point défi ni par  $\overrightarrow{OT} = \overrightarrow{AC} + \overrightarrow{OD}$  et I le milieu du segment [AG]

- a) Déterminer les coordonnées des points T et I.
- b) Donner les composantes de chacun des vecteurs  $\overrightarrow{TB}$ ,  $\overrightarrow{TI}$  et  $\overrightarrow{TB}$   $\wedge$   $\overrightarrow{TI}$
- c) Calculer le produit scalaire  $(\overrightarrow{TB} \wedge \overrightarrow{TI}). \overrightarrow{TA}$  puis déduire que le point A n'appartient pas au plan (TBI)

Calculer le volume *V* du tétraè dre *BIAT*.



Soit M un point quelconque de la droite (OF).

- a) Montrer que les coordonnées de M sont  $(2\alpha, 2\alpha, 2\alpha)$  où  $\alpha$  est un réel.
- b) Exprimer, en fonction de  $\alpha$ , d (M (BC)) la distance du point M à la droite (BC)
- C) Déterminer la position du point M pour que d (M, (BC)) soit égale  $\sqrt{2}$

La première règle de la réussite, ne jamais remettre au lendemain l'exécution d'un travail