LYCEE TATAOUINE 2

<u>Le</u>: 11/11/2019

DEVOIR DE CONTROLE N°1

EPREUVE: SCIENCES PHYSIQUES

CLASSE : 4^{éme} Sciences Expérimentales

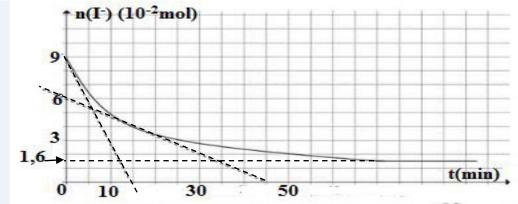
Prof: HANDOURA Naceur

Durée: 2 Heures

CHIMIE (9pts)

Exercice N°1 (5pts):

Dans un bécher, on mélange à t=0s, un volume V_1 = 100mL d'une solution aqueuse d'iodure de potassium (KI) acidifiée de concentration molaire C_1 = 0,9mol.L⁻¹ et un volume V_2 = V_1 d'une solution aqueuse d'eau oxygénée (H_2O_2) de concentration molaire C_2 . L'équation de la réaction supposée totale entre les ions I et H_2O_2 est : 2 I + H_2O_2 + 2 H_3O^+ \longrightarrow I_2 + 4 H_2O


1°/ Déterminer la quantité de matière initiale de I.

2°/ Dresser le tableau descriptif d'évolution de système.

 3° / Montrer qu'à t=0s, les concentrations initiales de H_2O_2 et Γ dans le mélange réactionnel sont :

$$[\mathbf{H}_2 \mathbf{O}_2]_0 = \frac{c_2}{2}$$
 et $[\Gamma]_0 = \frac{c_1}{2}$

4°/ Les résultats expérimentaux obtenus ont permis de tracer la courbe d'évolution de la quantité de matière des ions iodure Γ dans le mélange réactionnel au cours de temps.

a- En exploitant la courbe ci-dessous :

- Identifier, en le justifiant, le réactif limitant.
- Calculer la valeur de l'avancement final x_f de la réaction.
- Déduire la valeur de la concentration molaire C₂.

 5° /a- Déterminer la vitesse de la réaction aux instants t_1 =0 et t_2 =15min.

- b- Comparer ces vitesses et conclure.
- c- Quel est le facteur cinétique responsable à la variation de vitesse ? Justifier
- 6°/ Déterminer la quantité de matière minimale qu'il faut ajouter au mélange à l'instant t= 0s pour que la quantité de matière des ions iodure à l'état final soit égale à zéro.

Exercice N°2 (4pts)

On réalise la dismutation des ions thiosulfates $S_2O_3^{\ 2^-}$ en milieu acide selon la réaction totale d'équation :

$$S_2O_3^{2-} + 2 H_3O^+ \longrightarrow S + SO_2 + 3 H_2O$$

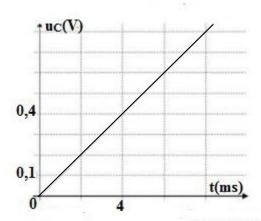
Trois expériences sont réalisées suivant les différentes conditions expérimentales précisées dans le tableau suivant :

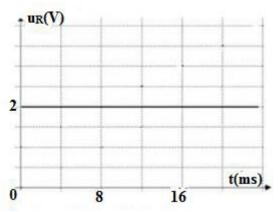
Numéro de l'expérience	1	2	3
Quantité initiale de S ₂ O ₃ ² -(mmol)	X	X	X
Quantité initiale de H ₃ O ⁺ (mmol)	40	80	80
Température du milieu réactionnel (°C)	20	40	20

A l'aide des moyens appropriés, on suit la variation se la quantité de matière de soufre n(S) en fonction de temps au cours de chacune des trois expériences réalisées. Les résultats obtenus sont représentés par la figure-1- de la page annexe.

- 1°/ Dire, en le justifiant, si H₃O⁺ joue le rôle d'un catalyseur ou d'un réactif dans chacune de trois expériences.
- 2°/ Préciser, en le justifiant, le réactif limitant.
- 3°/ Déterminer la vitesse moyenne de la réaction entre les instants t₀=0 et t₁=30s à partir de chacune de trois courbes (A), (B) et (C).
- 4° Attribuer, en le justifiant, chacune des courbes (A), (B) et (C) aux expériences 1, 2 et 3 sachant que le volume de mélange réactionnel est constant V=100mL dans les trois expériences.
- 5°/ En se plaçant dans les conditions de l'expérience où la réaction est la plus rapide, déterminer l'instant t₃ pour laquelle la vitesse de la réaction est égale à sa vitesse moyenne entres les instants t₀ et t₁.

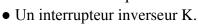
PHYSIQUE (11pts):


Exercice $N^{\circ}1$ (8.5pts):


Lors d'une séance de travaux pratique, 3 groupes d'élèves s'intéressent à l'étude de la charge et de la décharge d'un condensateur.

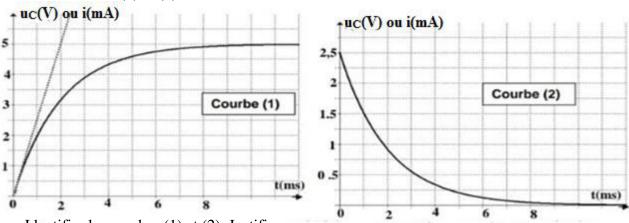
1^{ére} groupe : Le premier groupe réalise le circuit ci-contre qui comprend :

- ullet Un générateur de courant d'intensité constante I_0 .
- Un condensateur de capacité C.
- Un résistor de résistance $R=20k\Omega$
- Un interrupteur K.


On ferme K à un instant choisi comme origine des temps et on visualise sur l'écran d'un oscilloscope, les courbes $u_R = f(t)$ et $u_C = u_{AB} = g(t)$ qui représentent l'évolution au cours du temps des tensions aux bornes de résistor et aux bornes du condensateur, on obtient les courbes suivants :

- 1°/a- Vérifier que l'armature B du condensateur est chargé négativement.
 - b- Le condensateur est-il initialement déchargé ? Justifier

- 2° / Reproduire le schéma du montage et représenter les connexions avec l'oscilloscope afin de visualiser les tensions $u_R(t)$ sur la voie Y_1 et $u_C(t)$ sur la voie Y_2 .
- 3°/ Montrer que la tension aux bornes du condensateur à un instant t à pour expression : $\mathbf{u}_{C} = \frac{\mathbf{I}_{0}}{c} \mathbf{t}$
- 4°/a- Montrer que l'intensité de courant débité par le générateur est I₀= 0,1mA
 - b- Déduire la valeur de la capacité C du condensateur.
- 5°/ A quel instant la tension u_C est égale à la tension u_R?
- $2^{\text{\'eme}}$ groupe : Les élèves du deuxième groupe réalisent le montage suivant comprenant :
- Un générateur de tension idéal de f.é.m E.
- Le même condensateur du 1^{ére} groupe initialement déchargé.
- ullet Deux conducteurs ohmiques de même résistance R_0 et un conducteur ohmique de résistance R_1 .


1°/ On bascule l'interrupteur K sur la position (1) à un instant pris comme origine de temps.

Ro

a- Montrer que l'équation différentielle qui vérifie la charge q du condensateur est :

$$\frac{dq}{dt} + \frac{q}{\tau} = \frac{E}{2.R_0} \quad \text{avec } \tau = 2.R_0.C$$

- b- Vérifier que q(t)= $A(1-e^{-t/\tau})$ est une solution de l'équation différentielle et que A= C.E
- c- Déduire l'expression de l'intensité de courant i(t).
- 2° / Un dispositif approprié nous a permis de tracer les courbes d'évolution au cours de temps de la tension u_C aux bornes du condensateur et de l'intensité de courant i qui circule dans le circuit. On obtient les courbes (1) et (2) :

- a- Identifier les courbes (1) et (2). Justifier
- b- Déterminer la valeur de la f.é.m E, l'intensité initiale de courant qui circule dans le circuit et déduire la valeur de R₀.
- 3°/ On trace la tangente à la courbe (1) au point d'abscisse t=0s.
 - a- Déterminer la constante de temps τ .
 - b- Retrouver la valeur de la capacité C du condensateur.
 - c- Montrer à partir de la courbe (1) que l'intensité initiale de courant est i₀= 2,5 mA.
- 4° / Déterminer la valeur de l'énergie électrique E_{C0} emmagasinée par le condensateur lorsqu'il est totalement chargé.
- $3^{\text{\'eme}}$ groupe : Une fois le condensateur est totalement chargé, l'un des élèves du troisième groupe bascule l'interrupteur K sur la position (2) à un instant pris comme nouvelle origine de temps.
- 1°/ Montrer qu'a t= 0s la tension aux bornes de résistor R_1 est : $u_{R1} = -\frac{R_1 \cdot E}{R_1 + R_0}$

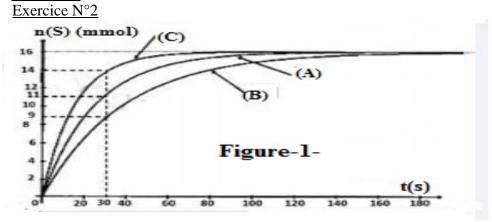
2°/ Montrer que l'équation différentielle qui vérifie la tension aux bornes de résistor R₁ est :

$$\tau_1 \, \frac{du_{R1}}{dt} \, + u_{R1} = 0$$

Donner l'expression de τ_1

- 3°/ Sachant que la solution de cette équation différentielle est de la forme $\mathbf{u_{R1}}(t) = \mathbf{B.e^{-\alpha t}}$ Trouver les expressions de B et α .
- 4°/ A l'instant $\mathbf{t_1} = 4\mathbf{ms}$, l'énergie électrique emmagasinée par le condensateur est $\mathbf{E_C}(\mathbf{t_1}) = \mathbf{0,137.E_{C0}}$ a- Montrer que $\mathbf{t_1} = \mathbf{\tau_1}$.
 - b- Déduire la valeur de R₁.

Exercice $N^{\circ}2$ (2,5pts):


On considère un aimant droit et une bobine B reliée à un galvanomètre (Figure-2- de la page annexe). Si on éloigne le pôle sud de l'aimant droit de la face A de la bobine (B), l'aiguille du galvanomètre subit une déviation.

- 1°/a- Nommer le phénomène qui se produit dans la bobine.
 - b- justifier la déviation du l'aiguille de galvanomètre.
- 2°/ Enoncer la loi de LENZ.
- 3°/ Représenter, en le justifiant, sur la figure-2- de la page annexe et au centre de la bobine le champ magnétique inducteur B, le champ magnétique induit b, le sens de courant ainsi que la nature des faces A et B.
- 4°/ Donner, en justifiant, la valeur indiquée par le galvanomètre si on arrête le mouvement de l'aimant.

Feuille annexe à rendre avec la copie

Nom: Classe

Chimie:

Physique: Exercice N°2:

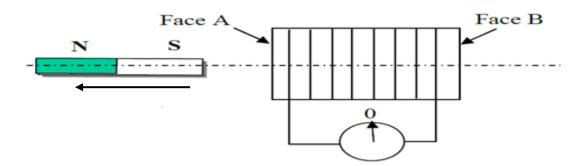


Figure-2-