Exercice N .01(03 points)

Cocher la bonne réponse.

I- Soit f la fonction définie par : $f(x) = \frac{x^2}{|x+I|-|x-I|}$

1°) Le domaine de définition de f est :

 \Box]- ∞ ; -1[\cup]1; + ∞ [

 \square]-1; 1[; \square IR^{*}

2°) La fonction f est :

□ Paire

☐ Impaire ; ☐ Ni paire ni impaire

II- A et B deux points du plan et I le milieu de [AB].

1/- $\square \overrightarrow{IA}.\overrightarrow{IB} = 0$; $\square \overrightarrow{IA}.\overrightarrow{IB} = IA^2$; $\square \overrightarrow{IA}.\overrightarrow{IB} = -\frac{AB^2}{A}$

2/- L'ensemble des points M du plan tels que MA.MB = 0

□ Cercle de diamètre [AB] privé de A et B ; □ La médiatrice de [AB]

Cercle de diamètre [AB]

Exercice N .02(7 points)

Soit *f* la fonction définie sur IR par : $f(x) = \frac{x^2 + 2}{x^2 + 1}$.

1/- a)- Justifier la continuité de f sur IR.

-b) Etudier la parité de $\,f\,$ et interpréter graphiquement le résultat

c)- Vérifier que pour tout $X \in \mathbb{R}$ on a : $f(x) = 1 + \frac{1}{x^2 + 1}$.

2/- Montrer que tout $x \in IR$ on a : $1 \le f(x) \le 2$.

3/- a)- Le réel 1 est-il le minimum de f sur IR.

b)- Déterminer le maximum de f sur IR.

4-a-Montrer que l'équation $f(x) = \frac{7}{4}$ admet au moins une solution $\alpha \in]0;1[$

b-Montrer que α est une solution de l'équation $3x^2 - 1 = 0$

5-Montrer que f est strictement décroissante sur $[0;+\infty[$.

b- Donner le signe de f sur $[0;+\infty[$

6-Déterminer l'image de [0,4] et $[\alpha;1]$ par f

Exercice N .03(02 points)

Calculer la limite de f en a dans chacun des cas suivants :

1) $f(x) = \frac{2x^2 - 5x + 3}{x^2 - 3x + 2}$, a=1.

2)
$$f(x) = \frac{\sqrt{2x+10}-x-1}{x-3}$$
, a=3

Exercice N .04(07 points)

On considère un carré ABCD tel que AB=3 .On désigne par le point E le symétrique de C par rapport à B . F le point de [CD] et K le point de [BE] tel que EK=CF=1 .

1-a-Montrer que AD .AK= -6 . et FD .AK= -6 .

b- En déduire que les droites (AF) et (AK) sont perpendiculaires.

2-a-Calculer FK et KD.

b-Montrer que KD.KF=28

3-Soit O le milieu de de [FK] et $\zeta = \{ M \in P , \text{ tel que } \overrightarrow{KM} . \overrightarrow{FM} = 6 \}$.

a-Montrer que $D \in \zeta$

b-Montrer que OD = $\frac{5\sqrt{2}}{2}$.

c-Déterminer et construire l'ensemble ζ.

4- On considère un repère orthonormé $R(A,\vec{i},\vec{j})$ tel que $\vec{i} = \frac{1}{3}\vec{AB}$ et $\vec{j} = \frac{1}{3}\vec{AD}$ a-Déterminer les coordonnées de A, B,D,F et K

b-Retrouver le résultat de la question (1-b)