Exercice n°1:(4 points)

I)La durée de vie d'un robot, exprimée en années, jusqu'à ce que survienne la première panne est une variable aléatoire T qui suit une loi exponentielle de paramètre λ , avec $\lambda > 0$.

1) Déterminer λ , arrondi à 10^{-1} près sachant que la probabilité : $P(T \le 6) = 0.7$.

Pour la suite de l'exercice, on prendra $\lambda = 0,2$.

- 2) Déterminer la valeur T_0 à un mois près vérifiant $p(T \ge T_0) = 0.5$
- 3) Sachant qu'un robot n'a pas eu de panne au cours des deux premières années, quelle est, à 10⁻² près, la probabilité qu'il soit encore en état de marche au bout de six ans ?
- II) 1) Un revendeur commande un lot de 10 robots fonctionnant de manière indépendante.
- a)Déterminer la probabilité qu'il y ait au moins un robot ayantune durée de vie inférieure à 6 ans.
- b)Déterminer la probabilité qu'il y ait au plusdeux robotsayantune durée de vie inférieure à 6 ans.
- 2) Le lot de 10 robots est réparti comme suit :8 robots de marque A et 2 de marque B mais ils sont emballés dans despaquets identiques donc on ne peut connaître la marque que si on ouvre cet emballage.

Un client veut acheter un robot demarque A donc le revendeur va ouvrir les emballages un par un jusqu'à ce qu'il trouvelepremier robot demarque A.

Soit X la variable aléatoire qui prend pour valeur le nombre des packets ouverts jusqu'à ce qu'il apparait un robot demarque A pour la première fois .

On note P_n la probailité que le revendeur ouvre n packets pour qu'un robot demarque A apparaisse pour la première fois.

- a) Vérifier que $1 \le n \le 3$
- b) Montrer que $P_1 = \frac{8}{10}$ et que $P_2 = \frac{16}{90}$
- c)Déterminer la loi de probabilité de X puis calculer son espérence.

Exercice n°2: (4 points)

L'ampicilline est un antibiotique utilisé pour traiter les infections bactériennes.

Lorsqu'on l'injecte à un patient, la substance va s'infiltrer dans le réseau sanguin puis sera filtrée par les reins et le foie puis éliminée à une vitesse qui dépend de l'infection.

On injecte à un adulte malade une quantité de 500 mg et on note f(t) la quantité d'ampicilline restante dans le corps à l'instant t exprimé en heure.

On sait que f(t) est une solution de l'équation différentielle (E) : y' = ay où a est un réel.

- 1) a) Résoudre dans [0, +∞[l'équation différentielle (E) en fonction de a.
 - b) Déduire que $f(t) = 500e^{at}$
 - c) Sachant que chez un adulte, 40% de l'antibiotique sera éliminé aprés une heure ,déterminer la valeur de a à 10^{-1} prés.
- 2) Dans la suite on prend $\underline{a = -0.5}$.
 - a) Calculer la quantité restante après 3 heures.
 - b) Au cours de quelle heure la quatité restante est égale à 40mg?
- c) Sachant que l'antibiotique perd son efficacité si la quantité est inférieure à 9 mg, après combien d'heures le malade doit prendre la deuxième dose .(temps arrondi à l'unité)

Exercice n°3: (5 points)

L'espace est muni d'un repère orthonormé direct $(0, \vec{i}, \vec{j}, \vec{k})$.

Soit les points A(1,2,-1), B(1,0,1), C(2,1,-1).

- 1)a) Calculer $AB \wedge AC$ et déduire que A, B et C ne sont pas alignés.
 - b) Déterminer une équation cartésienne du plan P=(ABC).
- 2) Soit S l'ensemble des points d'équation : $x^2 + y^2 + z^2 = 10$.
- a) Monter que S est une sphère dont on précisera le rayon et le centre.
- b) Montrer que S et P sont sécants suivant un cercle (C) dont on précisera le rayon et le centre H.

- 3)Soit Q le plan médiateur du segment [AB] et soit la droite Δ : $\begin{cases} x = 1 2 & \text{if } x = 1 2 \\ y = 1 + \infty & \text{if } x = 1 \\ z = \infty \end{cases}$
- a) Montrer qu'une équation du plan Q est : y z 1 = 0
 - b) Vérifier que $\Delta = P \cap Q$.
 - c) Déduire que pour tout point M de Δ on AM =BM.
- d) Montrer qu'il existe deux points du cercle (C) tel que AM =BM dont on déterminera leurs coordonnées.
 - e) Déduire qu'il existe un unique point D du cercle (C) telque ABD soit équilatéral.
- 4) Soit le point $N(\cos\theta + \sin\theta, -\sqrt{8}, \cos\theta \sin\theta)$ où $\theta \in [0, \pi]$
- a) Vérifier que $N \in S$.
- b) Montrer que le volume du tétraédre ABCN égale $V = \frac{1}{3} [\sqrt{8} + 2(1 \cos\theta)]$
- c)Déterminer la valeur de θ pour que le volume V soit maximal.

Exercice n°4: (7 points)

- 1) Soit la fonction f définie sur l'ensemble]0, $+\infty$ [par $f(x) = \begin{cases} \frac{1}{1+xlnx} & \text{si } x \in]0, +\infty[\\ f(0) = 1 \end{cases}$
- a) Monter que f est continue à droite de 0.
- b) Etudier la dérivabilité de f à droite de 0 et interpréter graphiquement le résultat.
- c) Calculer $\lim_{x\to+\infty} f(x)$ puis interpréter graphiquement le résultat.
- 2)a) Montrer que pour tout $x \in]0, +\infty[: f'(x) = \frac{-1 lnx}{(1 + rlnx)^2}$
 - b) Dresser le tableau de variation de f.
- 3) Dans l'annexe ci-joint on atracé les courbes (C_1) et (C_2) des fonctions définies sur $[0, +\infty[$ respectivement par $x \to lnx$ et $x \to \frac{1}{x}$
- a) Construire le point A de (C_1) d'abscisse e^{-1} et le point B de (C_2) d'abscisse e^{-1} .
- b) Déduire une construction du point C de la courbe (C_f) d'abscisse e^{-1} .
- 4) Soit la fonction g définie sur l'ensemble $]0, +\infty[$ par $g(x) = 1 x + x \ln x$.
- a) Etudier le sens de variations de g.
 - b) Déduire que $g(x) \ge 0$ et que pour tout $x \in]0, +\infty[$ ona : $1 + x \ln x \ge x$
- c) Déduireque pour tout $x \in]0, +\infty[:f(x) \le \frac{1}{r}$ puis donner la position de (C_f) et (C_2) .
- d) Tracer dans l'annexe la courbe (C_f).
- 5)Soit \propto un réel de $[1, +\infty[$,on note A(\propto) l'aire de la partie du plan limitée par (C_f) , l'axe des abscisses et les droites d'équations x = 1 et $x = \infty$
- a) Montrer que pour tout $x \in [1, +\infty[$ on $a : \frac{1}{x+x/nx} \le f(x) \le \frac{1}{x}$
 - b) Déduire que : $\ln \mathbb{Z} 1 + ln \propto$) $\leq A(\propto) \leq ln \propto$. (On remarque que : $\frac{1}{r + r lnr} = \frac{\frac{1}{x}}{1 + lnr}$)
 - c) Déduire $\lim_{\alpha \to +\infty} A(\alpha)$

Tous nos meilleurs vœux de réussite

