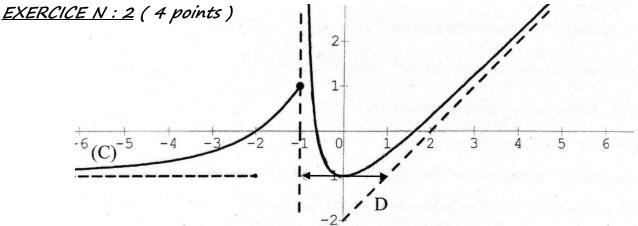
Lycée Houmet Souk	Devoir de contrôle N : 1	4 <u>Technique 2</u>	Nom:
<u>Prof : Loukil Mohamed</u>	<u>Durée : 2 Heures</u>	<u>07 -11- 2018</u>	<u>Prénom</u> :

EXERCICE N: 1 (3 points)

Pour chacune des questions ci-dessous cocher la seule réponse correcte .

$f(x) = \begin{cases} x^2 - 1 & \text{si } x < 0 \\ \frac{1 + \sqrt{x}}{1 - \sqrt{x}} & \text{si } x > 0 \end{cases}$	☐ f est continue sur $]$ 0 , $+ \infty$ [☐ f est continue sur $]$ - ∞ , 0 [☐ f est prolongeable par continuité en 0	$\lim_{x \to 1} \frac{1 - x}{\sin(1 - \sqrt{x})}$	□ 0 □ 2 □ N'existe pas
$g(x) = \frac{x^3 - 8}{x - 2}$	☐ g est continue en 2 ☐ $\lim_{x\to 2} g(x) = 0$ ☐ g est prolongeable par continuité en 2	$\lim_{x \to +\infty} \frac{x \sin x}{x^2 + x + 1}$	□ +∞ □ 0 □ N'existe pas
(Ch) admet une asymptote d'équation : $y = 1 - x$ au voisinage de $-\infty$ alors :		$k(x) = 1 - x^3$	□ $k(]1,2[)=[-7,0[$ □ $k([1,+\infty[)=]-\infty,0[$ □ $k([0,1])=[0,1]$



On a représenté ci-dessus la courbe représentative (${\it C}$) de la fonction f définie sur IR .

- **A)** Par lecture graphique, déterminer:
- 1) $\lim_{X\to +\infty} \frac{f(x)}{x}$; $\lim_{X\to -\infty} f\circ f(x)$; f(IR) et $f\circ f(]-\infty;-1]$).
- **2)** Montrer que l'équation : $f(x) = 1 + \frac{1}{2x}$ admet dans [-2, -1] une unique solution α .
- **B**) On considère la fonction g définie sur $[0, +\infty[$ par : $\begin{cases} g(x) = x f(\frac{1}{x}) & \text{si} & x>0 \\ g(0) = 1 \end{cases}$

On désigne par (Cg) sa courbe représentative dans un repère orthonormé (O, \vec{i} , \vec{j}).

- **1)** Montrer que g est continue à droite de 0.
- **2)** Prouver que $(g)'_{d}(0) = -2$.
- **3)** Montrer que la droite $\Delta: y = -x$ est une asymptote oblique à **(Cg)**.

EXERCICE N: 3 (6 points)

Soit la fonction
$$f$$
 définie sur IR par : $f(x) = \begin{cases} \sqrt{x^2 + 3} - 3 & \text{si } x < 1 \\ x^2 - 2 + x \sin(\frac{\pi}{x}) & \text{si } x \ge 1 \end{cases}$

On désigne par (Cf) sa courbe représentative dans un repère orthonormé (O , \vec{i} , \vec{j}) .

- **1)** Calculer: $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} [f(x)+x]$. (Interpréter géométriquement les résultats obtenus)
- **2) a)** Montrer que pour tout $x \in [1; +\infty[; x^2-x-2 \le f(x)]$.
 - **b)** En déduire $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$ (Interpréter géométriquement les résultats obtenus)
- 3) a) Montrer que f est dérivable à gauche de 1.
 - **b**) Montrer que f est dérivable sur chacun des intervalles] ∞ ; 1 [et [1; + ∞ [.
 - c) Calculer f'(x) pour tout $x \in]-\infty$; 1 [et $x \in [1; +\infty[$.
 - d) f est elle dérivable en 1 ? justifier votre réponse .
- **4)** Montrer que l'équation : f(x) = 0 admet au moins une solution α dans] 1; 2 [...

EXERCICE N: 4 (7 points)

- **I)** On considère dans \mathbb{C} l'équation (E_{θ}): Z^2 -(2 i cos θ) Z-1 = 0 , où $\theta \in]0$, $\frac{\pi}{2}[$. On pose Z' et Z'' les solutions de (E_{θ}) avec Re(Z')<0 .
- **1)** Sans chercher Z'et Z" déterminer la valeur de θ pour laquelle $\frac{i}{Z'} + \frac{i}{Z''} = 1$.
- **2) a)** Résoudre dans \mathbb{C} l'équation (E_{θ}).
 - $m{b}$) Ecrire Z'et Z" sous la forme exponentielle .
- **II)** Le plan complexe est rapporté à un repère orthonormé direct (O, \vec{u} , \vec{v}) et $\theta \in]0$, $\frac{\pi}{2}[$. On donne les points M, M' et M'' d'affixes respectives $Z_M = 2i\cos\theta$, $Z_{M'} = ie^{i\theta}$ et $Z_{M''} = ie^{-i\theta}$.
- **1) a)** Déterminer et construire l'ensemble (Γ) des points M lorsque θ varie dans $]0, \frac{\pi}{2}[$.
 - **b**) Construire l'ensemble (Γ') des points M' lorsque θ varie dans] 0 , $\frac{\pi}{2}$ [.
 - c) Prouver que M' et M'' sont symétriques par rapport à l'axe (O, \vec{v}) .
- **2**) Montrer que la distance MM' est constante pour tout $\theta \in]0$, $\frac{\pi}{2}[$.
- 3) a) Montrer que OM'MM" est un losange.
 - **b**) Donner une mesure de ($\overrightarrow{OM''}$, $\overrightarrow{OM'}$) en fonction de θ .
 - **c**) Déterminer la valeur de $\, heta\,$ pour laquelle $\,$ OM'MM'' $\,$ soit un carré $\,$.

