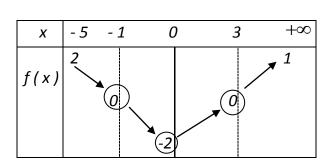
EXERCICE N: 1 (4 points)

A) Déterminer l'ensemble de définition et étudier la parité des fonctions suivantes :

$$g(x) = \sqrt{x^2 - 4} ;$$

 $h(x) = \frac{x^3 + x}{|x| - 3}$

- **B**) On donne ci-contre le tableau de variations de la fonction f définie sur $[-5; +\infty[$.
- **1)** Comparer f(1) et f(2). Justifier la réponse.
- **2) a)** Résoudre dans $[-5; +\infty[$ l'équation f(x) = 0. **b)** Déterminer le signe de f(x) sur $[-5; +\infty[$
- **3)** Préciser les extrema de f et leur nature .
- **4)** Discuter suivant les valeurs du paramètre m le nombre de solution(s) de l'équation : f(x) = m.



EXERCICE N: 2 (4.5 points)

Pour chacune des questions ci-dessous cocher la seule réponse correcte.

$\lim_{x \to 1} (2x^2 - 3x + 2)$	□ 7 □ 0 □ 1	$\lim_{x \to 1} \frac{2x^2 - x - 1}{x^2 - x}$	□ 3 □ 0 □ 1	$f(x) = \begin{cases} x^2 + 1 & \text{si } x < 0 \\ \frac{2 + \sqrt{x}}{2 - \sqrt{x}} & \text{si } x > 0 \end{cases}$	
$\lim_{x \to 3^{+}} \frac{8 - x^{2}}{\sqrt{x^{2} - x - 6}} =$	□ +∞ □ - 1 □ -∞	$\lim_{x\to 1^{-}}\frac{ x-1 }{x-1}$	□ 1 □ 0 □ -1	$g(x) = \begin{cases} x-1 & \text{si } x < -2 \\ x^2 - 3 & \text{si } x \ge -2 \end{cases}$	
$\lim_{x \to 0^+} \frac{2x^2 + x + 1}{x^2 - x} =$	□ 2 □ +∞ □ -∞	$\lim_{x\to 0} \frac{x}{\sqrt{x+4}-2} =$	□ 0 □ 4 □ 1	$\begin{cases} h(x) = \frac{x^3 - 1}{x - 1} & \text{si } x \neq 1 \\ h(1) = 0 \end{cases}$	

EXERCICE N: 3 (5.25 points)

Soit la fonction f définie sur IR \{-2\} par: $f(x) = \begin{cases} \frac{x^3 + x + \mathbf{a}}{x + 2} & \text{si} \quad x < 1\\ x^2 - 2x + 2 & \text{si} \quad 1 \le x < 2\\ \sqrt{x^2 + 5} + x + \mathbf{b} & \text{si} \quad 2 \le x \end{cases}$

- **A)1)** Calculer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpréter géométriquement les résultats obtenus .
 - **2)** Déterminer les valeurs de \mathbf{a} et \mathbf{b} pour que f admet une limite en 1 et une limite en 2.

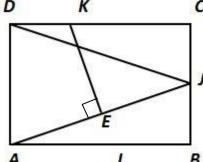
B) Dans la suite on prend: a = 1 et b = -3.

- **1)** Montrer que la droite Δ : y = 2x 3 est une asymptote à **(Cf)** au voisinage de $+ \infty$.
- **2)** Calculer $\lim_{x \to -2^+} f(x)$ et $\lim_{x \to -2^-} f(x)$. Interpréter géométriquement les résultats obtenus .
- 3) Soit g la restriction de f sur [2; + ∞ [
 - **a**) Prouver que g est strictement croissante sur $[2; +\infty[$.
 - **b**) Donner le minimum absolu de g .
 - c) g est elle majorée ? justifier la réponse .

EXERCICE N: 4 (6.25 points)

A) Dans le plan on donne un rectangle ABCD tel que $AB = \frac{3}{2}$ et AD = 1. Soit J le milieu du segment D K [BC], K le point définie par : $\overrightarrow{DK} = \frac{1}{3}$ \overrightarrow{DC} et E le projeté

orthogonal du point K sur la droite (AJ) .



- **1)** Calculer les produits scalaires : $\overrightarrow{AB} \cdot \overrightarrow{AJ}$, $\overrightarrow{AD} \cdot \overrightarrow{BJ}$ et $\overrightarrow{DK} \cdot \overrightarrow{AB}$
- **2)** Déduire que $\overrightarrow{AK} \cdot \overrightarrow{AJ} = \frac{5}{4}$.
- **B**) On muni le plan au repère orthonormé $R(A; \overrightarrow{AI}; \overrightarrow{AD})$. $(I \in [AB] \ et \ AI = 1)$
- **1)** Déterminer dans le repère R les coordonnées des points B, C, D, J et K.
- **2) a)** Montrer que le triangle AKJ est rectangle et isocèle en K .
 - $m{b}$) Déduire que le point E est le milieu du segment [AJ] et déterminer ses coordonnées dans $m{R}$.
- **3)** Soit $(\Gamma) = \{ M(x,y) \in P \text{ tels que} : MA^2 + MJ^2 = \frac{7}{2} \}$.
 - **a**) En utilisant la formule de la médiane montrer que (Γ) est un cercle dont on précisera le centre et le rayon .
 - $m{b}$) En utilisant la géométrie analytique dans $\mbox{\it R}$ retrouver le résultat de la question précédente $\mbox{\it .}$

