Proposée par Mr

FEHRI BECHIR

2018/2019

Série d'Intégrales

Exercice N°1:

Soit f la fonction définie sur $\mathbf{R} \setminus \{1\}$ par $f(x) = \frac{2x-1}{(x-1)^3}$

On désigne par C sa courbe représentative dans un repère orthonormé (o, i, j)

1/ Etudier f et tracer C.

2/ Montrer qu'il existe deux réels a et b tel que f(x) = $\frac{a}{(x-1)^2} + \frac{b}{(x-1)^3}$, pour tout x ≠ 1

3/ soit $\lambda < \frac{1}{2}$. o pose A(λ) l'aire des abscisses et les droites d'équations $x = \lambda$ et $x = \frac{1}{2}$

a- Déterminer $A(\lambda)$.

b- Calculer $\lim_{\lambda \to -\infty} A(\lambda)$

Exercice N°2:

1/ A l'aide d'une intégration par parties calculer les intégrales $\int_0^\pi x \cos x \ dx$ et $\int_0^\pi x \sin x \ dx$

2/ En déduire les valeurs des intégrales $\int_0^{\frac{\pi}{2}} x^2 \cos x \, dx$ et $\int_0^{\frac{\pi}{2}} x^2 \sin x \, dx$.

Exercice N°3:

A / On considère la fonction f définie sur] 0, $\frac{\pi}{2}$ [par f(x) = $\frac{1}{\sin^2 x}$.

1/ Montrer que f(x) = $\frac{1+tan^2x}{tan^2x}$, x \in]0, $\frac{\pi}{2}$ [.

2 / Montrer que f réalise une bijection de] 0, $\frac{\pi}{2}$ [sur un intervalle I que l'on précisera .

3/ Montrer que la réciproque $(f^{-1})(x) = -\frac{1}{2\sqrt{x^3 - t}}$, pour tout x de I.

4/ Calculer l'intégrale $\int_{\frac{\pi}{2}}^{2} \frac{dt}{2\sqrt{t^3-t}}$.

B/représenter dans un repère orthonormé (o \vec{i}, \vec{j}), la fonction f définie sur R par $f(x) = \frac{x^2}{1+x^2}$ 2/ soit A l'aire de la partie du plan limitée par la courbe de f, axe des abscisses et les droites d'équations x = 1 et x = 2

a- Vérifier que $\frac{1}{2} \le A \le 1$.

b- Utiliser la méthode des rectangle, en partageant l'intervalle [1,2] en cinq intervalles d'amplitude 0.2 pour donner un nouvel encadrement de A.

C/ Soit la suite (u_n) définie par $u_n = \int_0^1 \frac{x^n}{(x^2+1)^2} dx$, $n \ge 1$

1/ Montrer que $0 \le \frac{x^{2n+1}}{(x^2+1)^2} \le x^{2n+1}$ pour tout entier $n \ge 1$ et tout $0 \le x \le 1$

2/ en déduire que la suite (u_n) converge et déterminer sa limite

Exercice N°4:

On pose pour tout n entier naturel non nul $j_n = \int_0^1 x^n \sqrt{1 + x dx}$

1/A l'aide d'un encadrement de $\sqrt{1+x}$ établir que $\frac{1}{n+1} \le j_n \ll \frac{\sqrt{2}}{n+1}$.

En déduire la limite j_n

2/a- Montrer que pour tout x de [0.1] $0 \le \sqrt{2} - \sqrt{1+x} \le \frac{1}{2} (1-x)$

b- En déduire que $\frac{\sqrt{2}}{n+1}$ - $\frac{1}{2n^2} \le j_n \le \frac{\sqrt{2}}{n+1}$

C- Déterminer la limite de la suite (nj_n) .

Exercice N°5:

Soit la suite (u_n) définie par $u_n = \int_0^{\frac{\pi}{4}} x^n \cos 2x \ dx$, $n \ge 0$

1/ Montrer que la suite (u_n) est décroissante

2/ Comparer u_n et $\int_0^{\frac{\pi}{4}} x^n dx$, $n \ge 1$

3/ En déduire que (u_n) est convergente et déterminer sa limite

4/a- Calculer u₀ et u₁

b-Exprimer u_{n+2} en fonction de u_n .

c-Calculer u₂ et u₃.

Exercice N°6:

Soit la suite I_n définie par $I_n = \int_0^{\pi} \sin^n x \, dx$.

1/ Calculer I₀ et I₁

2/ Montrer que pour tout entier naturel n , (n+2) $I_{n+2} = (n+1) I_n$. En déduire les valeur de I_2 et I_3 .

3/ On considère la suite(u_n) déduire pour tout entier naturel n par $u_n = (n+2) I_n I_{n+1}$.

a-Calculer u_{n+1} - u_n et en déduire que la suite (u_n) est constante.

b-Donner la valeur de u_n.

4/ Montrer que la suite (u_n) est décroissante.

5/a- Déduire que $\frac{\pi}{2(n+1)} \le I_n^2 \le \frac{\pi}{2n}$, $n \ge 1$.

b-Donner un encadrement de I₁₀₀₀

Exercice N°7:

On pose pour tout n entier naturel n, $I_n = \int_0^{\frac{\pi}{4}} tan^{n+2}x \ dx$.

1/a- Calculer I₀.

b-Vérifier que pour tout $n, 0 \le I_{n+1} \le I_n$.

c-En déduire que la suite (I_n) est convergente . Tapez une équation ici.

2/a- Montre que pour tout n , $I_n + I_{n+2} = \frac{1\pi}{n+3}$

"Le Premier règle de la réussite ne jamais remettre au lendemain l'exécution d'un travail "

b-En déduire $\lim_{n \to \infty} I_n$ Calculer I_2 et I_4 .

Exercice N°8:

I/On considère la fonction f définie sur $[0,\frac{\pi}{4}]$ par $f(x) = \int_0^{tanx} \frac{dt}{1+t^2}$.

1/ Vérifier que f est dérivable sur $[0,\frac{\pi}{4}]$ et déterminer sa fonction dérivée.

2/ En déduire que pour tout $x \in [0, \frac{\pi}{4}]$, f(x) = x

3/ Calculer $\int_0^1 \frac{dt}{1+t^2}$

II/ On considère la suite (j_n) définie par $j_{0=1}$ $\int_0^1 \frac{dt}{1+t^2}$ et $j_n = \int_0^1 \frac{t^{2n}}{1+t^2} dt$, $n \ge 1$

1/a- Vérifier que pour tout n, $0 \le j_n \le \frac{1}{1+2n}$.

b-En déduire $\lim_{n \to +\infty} j_n$.

2/a- Montrer j_k , pour tout entier naturel $0 \le k \le 6$.

Exercice N°9:

On considère la fonction f définie sur $[0, \frac{\pi}{2}]$ par $f(x) = \int_0^{\sin x} \sqrt{1 - t^2} dt$.

1/ Vérifier que f est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et déterminer sa fonction dérivée.

2/En déduire que pour tout $x \in [0, \frac{\pi}{2}]^2$, $f(x) = \frac{1}{2}x + \frac{1}{4}\sin(2x)$

3/Calculer $f(x) = \int_0^1 \sqrt{1 - t^2} dt$

4/ Etudier les variation de f

5/ Tracer la courbe représentative de f dans un repère orthonormé ($0, \vec{i}, \vec{j}$).

Exercice N°10:

On considère la fonction f définie sur [-2,2] par $f(x) = x + \sqrt{4 - x^2}$.

1/ Etudier f et représenter sa courbe C dans un repère orthonormé.

2/ Soit f la fonction définie sur $[0,\pi]$ et que f $(x) = \int_0^{2\cos x} \sqrt{4-t^2} dt$.

a- Montrer que f est dérivable sur $[0,\pi]$ et que f'(x) = -4 sin^2x , $x \in [0,\pi]$.

b- Calculer $f(\frac{\pi}{2})$.

c- En déduire que pour tout $x \in [0, \pi]$, $f(x) = -2x + \sin(2x) + \pi$.

3/ Soit A l'aire de la partie du plan limité par la courbe C, l'axe des abscisses et les droites d'équation, y=x, x=-2 et x=2

a- Montrer que $A = f(0) - f(\pi)$.

b- Déduire A