Série Fonction Réciproque

Année Scolaire 2018/2019

Exercice N°1:

Soit f la fonction définie sur l'intervalle [$\frac{\pi}{2}$, π [$\operatorname{par} f(\mathbf{x}) = \frac{1}{\sin x}$.

1/ Montre que f réalise une bijection de $\left[\frac{\pi}{2}, \pi\right]$ sur $\left[1, +\infty\right]$.

2/ Calculer $f^{-1}(\sqrt{2})$ et $f^{-1}(\frac{2\sqrt{3}}{3})$.

3/ Etudier la continuité et la dérivabilité de f^{-1} sur [1,+ ∞ [.

 $4/ \operatorname{calculer} (f^{-1})(x), \operatorname{pour} x \in]1, +\infty[.$

Exercice N°2:

Le plan est muni d'un repère orthonormé (O,i, j)

Soit f la fonction définie sur l'intervalle] $-\frac{\pi}{2}, \frac{\pi}{2}$ [par $f(x) = 1 - \tan x$

1/ Dresser le tableau de variation de f .

2/ Montrer que f réalise une bijection de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [sur R .

3/ Calculer $f^{-1}(0)$ et $f^{-1}(2)$.

4/ Montrer que f^{-1} est dérivable sur R et que (f^{-1}) $(x) = \frac{1}{-x^2+2x-2}$, pour tout réel x

5/ Etudier la nature des branches infinies de la courbe de f^{-1} .

Exercice N°3:

Le plan est muni d'un repère orthonormé (O,i, j)

Soit f la fonction définie sur l'intervalle [$0,\frac{\pi}{2}$] par $f(x) = \sqrt{\cos x}$

1/ Etudier la dérivabilité de la fonction f en $\frac{\pi}{2}$ à gauche et interpréter .

2/ a) Montrer que f admet une fonction réciproque f^{-1} définie sur [0, 1].

b) Montrer, en utilisant la première question, que la fonction f^{-1} est dérivable 0 à droite et préciser le nombre $(f^{-1})_d(0)$.

c/ Préciser la demi –tangente à la courbe de f en son point d'abscisse 0 et en déduire que f^{-1} n'est pas dérivable à gauche en 1

3/ Montrer que f^{-1} est dérivable sur] 0,1 [et que $(f^{-1})'(x) = \frac{-2x}{\sqrt{1-x^4}}$ pour tout $x \in [0, 1]$

Exercice N°4:

Soit f la fonction définie sur l'intervalle [0,1] par $f(x) = \cos \frac{\pi}{2} x$

1/ Etudier les variations de f et tracer sa courbe dans un repère orthonormé (O,i, j). (on précisera les demi – tangentes aux points d'abscisses 0 et 1).

2/ Montrer que f réalise une bijection de [0,1] sur un intervalle I que l'on précisera.

3/Montrer quef⁻¹ est dérivable sur [0,1[et que $(f^{-1})(x) = \frac{-2}{\pi\sqrt{1-x^2}}$, pour tout x de [0,1[.

Exercice N°5:

Soit f la fonction définie sur l'intervalle] 0,1] par $f(x) = \frac{1}{1-\cos \pi x}$

- 1/ / Etudier les variations de f et tracer sa courbe dans un repère orthonormé (O,i, j).
- 2/ a) Montrer que l'équation f(x) = x admet une unique solution x_0 dans] 0,1].
- b) calculer $f(\frac{2}{3})$ et en déduire la valeur de x_0 .
- 3/a) Montrer que f réalise une bijection de] 0,1] sur $\left[\frac{1}{2}, +\infty\right[$.
- b) la fonction f^{-1} est elle dérivable en $\frac{1}{2}$ à droite ?.
- c) Montrer que f⁻¹ est dérivable sur $]\frac{1}{2}$, $+\infty[$ et que $(f^{-1})'(x) = \frac{-1}{\pi x \sqrt{2x-1}}$, pour tout $x \in]\frac{1}{2}$, $+\infty[$.

Exercice N°6:

- A)Soit f la fonction définie sur l'intervalle $[1,+\infty[$ par $f(x)=\frac{\sqrt{x^2-1}}{x}+1]$
- 1/ a- Etudier la dérivabilité de f à droite en 1
- b- Dresser le tableau de variations de f.
- c- Montrer que réalise une bijection de $[1,+\infty[$ sur un intervalle I que l'on précisera .
- 2/a la fonction f^{-1} est –elle dérivable à droite en 1 ?
- b-Expliciter $f^{-1}(x)$ pour $x \in I$.
- B) On considère la fonction g définie par

$$g(x) = \begin{cases} \frac{1}{\sqrt{\frac{1}{\cos x}}} & \text{si } x \in [0, \frac{\pi}{2}] \\ \frac{1}{2} & \text{si } x = \frac{\pi}{2} \end{cases}$$

1/a Montrer que g est continue à gauche en $\frac{\pi}{2}$.

b-vérifier que pour tout $x \in [0, \frac{\pi}{2}]$.

$$g(x) = \frac{1}{1-\sin x} .$$

2/ Montrer que g réalise une bijection de $[0, \frac{\pi}{2}]$ sur un intervalle J que l'on précisera .

3/a- Montrer que g^{-1} est dérivable sur $\left[\frac{1}{2},1\right]$ et calculer $\left(\frac{1}{2},1\right)$ et calculer $\left(\frac{1}{2},1\right)$

b- La fonction g^{-1} est -elle dérivable à droite en $\frac{1}{2}$?.