Sujet n°4

EXERCICE 1 :

Dans le plan muni d'un repère orthonormé direct (O; $\overrightarrow{e_1}$, $\overrightarrow{e_2}$), d'unité 1 cm, on considère les points A(-1;0) et I(4;0).

On note (E) l'ellipse de centre I dont un sommet est A et un foyer est le point O.

- a) Déterminer les coordonnées des trois autres sommets de (E) dans le repère $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$. 1
 - b) Justifier que l'excentricité de (E) est égale à $\frac{4}{5}$.
 - c) Donner une équation de la directrice (D) de l'ellipse (E) associée au foyer O dans le repère (O; $\overrightarrow{e_1}$, $\overrightarrow{e_2}$).
- a) Démonter qu'une équation de (E) dans le repère $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$ est : 2- $\frac{(x-4)^2}{25} + \frac{y^2}{9} = 1$
 - b) Déterminer par leurs équations les tangentes T et T' à (E) passant par le point H(-2,0).

EXERCICE 2: (Bac 2013)

Dans l'annexe ci-jointe (Figure 1), (O, \bar{i}, \bar{j}) est un repère orthonormé et (C) est le cercle de centre O passant par les points A(2, 0) et A'(-2, 0).

- 1) Soit P(x, y) un point du plan n'appartenant pas à $(0, \vec{i})$, H son projeté orthogonal sur l'axe $(0, \vec{i})$ et M (X,Y) le milieu du segment [PH].
 - a) Exprimer X et Y à l'aide de x et y.
 - b) Montrer que lorsque P varie sur le cercle (C), M varie sur l'ellipse (E) d'équation $\frac{X^2}{4} + Y^2 = 1$.
 - c) Tracer l'ellipse (E) dans le même repère (O, i, j).
- 2) Soit $P_0(1,\sqrt{3})$ et $M_0(1,\frac{\sqrt{3}}{2})$.

La tangente (T) au cercle (C) en P₀ coupe l'axe des abscisses au point I.

- a) Montrer que I a pour coordonnées (4, 0).
- b) Montrer que la tangente à l'ellipse (E) en M₀ passe par I.

EXERCICE 3:

Dans le plan rapporté à un repère orthonormé direct (O, \vec{i}, \vec{j}) , on pose pour tout réel $\theta \in \left]0, \frac{\pi}{2}\right[$ le point $\mathbf{M}\left(\frac{1}{2\cos\theta}, 2\tan\theta\right)$

- 1) a) Montrer que lorsque θ décrit l'intervalle $\left]0,\frac{\pi}{2}\right[$ le point M varie sur une hyperbole (H) dont on donnera une équation cartésienne.
 - b) Déterminer par leurs coordonnées les sommets et les foyers de (H).
- 2) Soit T la tangente à (H) en M. Montrer qu'une cartésienne de T dans le repère $(\vec{O}, \vec{i}, \vec{j})$ est $2x y \cdot \sin\theta 2\cos\theta = 0$
- 3) On désigne par P_1 et P_2 les points d'intersection de T avec les asymptotes Δ_1 et Δ_2 à l'hyperbole (H)
 - a) Déterminer les coordonnées des points P_1 et P_2
 - b) Montrer que l'aire du triangle OP_1P_2 est indépendante de θ .

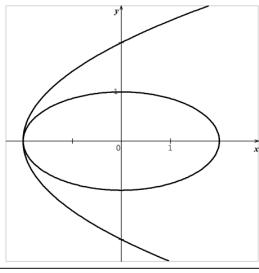
EXERCICE 4: (Bac 2014)

Le plan étant rapporté à un repère orthonormé (O, \vec{i} , \vec{j}).

1) a) Soit (\mathcal{E}) l'ellipse d'équation : $\frac{x^2}{4} + y^2 = 1$

Déterminer les coordonnées des foyers de l'ellipse (\mathcal{E}) et donner son excentricité.

- b) Soit (\mathcal{P}) la parbole d'équation $y^2 = 2x + 4$. Déterminer les coordonnées du foyer F de la parabole (\mathcal{P}) et donner une équation de sa directrice.
- 2) Dans l'annexe ci-jointe, on a tracé dans un repère orthonormé $(O, \vec{\iota}, \vec{\jmath})$ l'ellipse (\mathcal{E}) et la parabole (\mathcal{P}) . Soit (Γ) la courbe d'équation $y^2 = -2|x| + 4$
 - a) Vérifier que (O, \vec{j}) est un axe de symétrie de (Γ) .
 - b) Tracer (Γ) dans le repère (O, $\vec{\iota}$, \vec{j}).
- 3) a) Soit (C) le cercle d'équation : $x^2 + y^2 = 4$ Vérifier que pour tout réel t de [0,2], le point M(t, $\sqrt{4-t^2}$) appartient à (C).
 - b) On pose $I_1 = \int_0^2 \sqrt{4 t^2} dt$. Montrer que $I_1 = \pi$
- 4) Calculer $I_2 = \int_0^2 \sqrt{-2t + 4} \, dt$.
- 5) Soit \mathcal{A} l'aire de la partie du plan limitée par la courbe (Γ) et l'ellipse (\mathcal{E}). Exprimer \mathcal{A} en fonction de I_1 et I_2 puis calculer \mathcal{A} .



EXERCICE 5 : (Bac 2016)

Dans le plan muni d'un repère orthonormé direct, on désigne par (E) l'ellipse d'équation : $x^2 + 9y^2 = 9$.

Dans la figure 1 de l'annexe 1 jointe, (C_1) est le cercle de centre O et de rayon 1, (C_2) est le cercle de centre O et de rayon 3, N est le point de coordonnées $(\cos\theta\,,\sin\theta)$. P est le point de coordonnées $(3\cos\theta\,,3\sin\theta)$, où θ est un réel appartenant à $\left]0,\frac{\pi}{2}\right[$.

- 1) Soit M le point de coordonnées $(3\cos\theta, \sin\theta)$.
 - a) Vérifier que M est un point de l'ellipse (E).
 - b) Placer le point M.
 - c) Justifier qu'une équation de la tangente T à (E) en M est $x \cos\theta + 3 y \sin\theta = 3$.
- 2) La tangente T à (E) en M coupe l'axe des abscisses et l'axe des ordonnées respectivement en H et K.
 - a) Déterminer les coordonnées des points H et K.
 - b) Montrer que $HK^2 = \frac{9}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}$.
- 3) Soit f la fonction définie sur $\left]0, \frac{\pi}{2}\right[$ par $f(\theta) = HK^2$.
 - a) Montrer que pour tout $\theta \in \left]0, \frac{\pi}{2}\right[, \quad f'(\theta) = 2\left(4\sin^2\theta 1\right) \frac{\cos^2\theta + 3\sin^2\theta}{\cos^3\theta \, \sin^3\theta}.$
 - b) En déduire que la distance HK est minimale si et seulement si $\theta = \frac{\pi}{6}$.
 - c) On désigne par D le point de l'ellipse (E) correspondant à $\theta = \frac{\pi}{6}$.

Construire le point D ainsi que la tangente en ce point à l'ellipse (E).

