Les équations différentielles

EXERCICE 1:

On considère les équations différentielles suivantes :

$$(E_0): y'-2y=0$$
 et $(E): y'-2y=e^{2x}$

- 1) Déterminer les fonctions g solutions de l'équation (E_0) .
- 2) Soit la fonction h définie sur IR par $h(x) = a.x.e^{2x} + b$ où a et b sont deux réels tels que h soit solution de l'équation (E). Déterminer les valeurs de a et b.
- 3) Montrer qu'une fonction f soit solution de l'équation (E) si et seulement si f h est solution de l'équation (E_0) .
- 4) En déduire la solution f de l'équation (E) qui prend la valeur 1 en 0.

EXERCICE 2:

On désigne par (E) l'équation différentielle y'' = -3y' + 1

- 1) En posant z = y', résoudre l'équation (E).
- 2) Déterminer la solution f de (E) vérifiant f(0) = f'(0) = 0

EXERCICE 3:

- 1) Vérifier que la fonction $u: x \mapsto 2$ est une solution de l'équation différentielle : $y' + 2y = y^2$
- 2) Soit E l'ensemble des fonctions f dérivables sur IR, qui ne s'annulent pas sur IR et telles que : $f'(x) + 2f(x) = (f(x))^2$ pour tout réel x.
 - a) Vérifier que l'ensemble E est non vide.
 - b) Soit f une fonction de E. Montrer que la fonction $g = \frac{1}{f}$ est une solution d'une équation différentielle de la forme y' = ay + b, où a et b sont deux réels.
 - c) Déterminer alors E.

EXERCICE 4:

- 1) Résoudre l'équation différentielle (E) : $9y'' + \pi^2 y = 0$.
- 2) On désigne par f la solution particulière de l'équation (E), dont la courbe représentative selon un repère orthogonal passe par le point $H(1,-\sqrt{2})$ et admet en ce point une tangente parallèle à l'axe des abscisses.
 - a) Déterminer f.
 - b) Ecrire f(x) sous la forme r.cos(ax + b) puis vérifier que f est périodique de période 6.
 - c) Calculer la valeur moyenne de f sur l'intervalle [335,341].

EXERCICE 5:

On considère les équations différentielles suivantes (E_0) : y'' + 4y = 0

et
$$(E): y'' + 4y = 3.\cos x$$

- 1) a) Déterminer la solution g de (E_0) telle que $g\left(\frac{\pi}{2}\right) = -1$ et $g'\left(\frac{\pi}{2}\right) = 2$.
 - b) Ecrire g(x) sous la forme $r.sin(2x-\alpha)$ où α est un réel.
- 2) Vérifier que la fonction $h: x \mapsto cosx$ est solution de (E).

- 3) Vérifier que la fonction f définie sur IR par f(x) = g(x) + h(x) est une solution de (E).
- 4) Montrer qu'une fonction p soit solution de (E) si et seulement si p-h est solution de (E_0) .
- 5) En déduire la fonction p solution de (E) telle que $p(\frac{\pi}{2}) = -1$ et $p'(\frac{\pi}{2}) = 1$

EXERCICE 6:

- 1) Résoudre l'équation différentielle : y'' + y = 0
- 2) Soit E l'ensemble des fonctions définies et dérivables sur IR telles que :

$$f'(x) + f\left(\frac{\pi}{2} - x\right) = 0$$

- a) Vérifier que la fonction $g: x \mapsto cosx$ est un élément de E.
- b) Soit f un élément de E. Vérifier que pour tout réel x, $f''(x) = f'(\frac{\pi}{2} x)$
- c) En déduire que si f est un élément de E, alors f est une solution de l'équation différentielle : y'' + y = 0
- d) Déterminer alors l'ensemble E.

EXERCICE 7:

On considère les équations différentielles :

$$(E_0): (1+e^x)y'-y=0$$
 et $(E): (1+e^x)y'-y=e^{2x}$

- 1) Soit la fonction g définie sur IR par : $g(x) = \frac{e^{2x}}{1+e^x}$ Montrer que g est une solution de (E) sur IR.
- Soit f une fonction dérivable sur IR.

Montrer que f est une solution de (E) si est seulement si (f - g) est une solution de (E_0) .

- 3) On pose $z = (1 + e^x)y$
 - a) Montrer que si y est une solution de (E₀) sur IR alors z est une solution d'une équation différentielle (E') que l'on précisera.
 - b) En déduire que les solutions de (E) sur IR sont les fonctions f définies par : $f(x) = \frac{ke^x + e^{2x}}{1 + e^x}$; $k \in IR$.
- 4) Soit la fonction f définie par : $f(x) = \frac{e^{2x} 3e^x}{1 + e^x}$ Etudier les variations de f.
- 5) Soit h la restriction de f à l'intervalle $[0, +\infty[$.
 - a) Montrer que h réalise une bijection de $[0, +\infty[$ sur un intervalle J que l'on précisera.
 - b) Soit h^{-1} la fonction réciproque de h, expliciter $h^{-1}(x)$ pour tout $x \in J$.
- a) Tracer dans le même repère orthonormé (0, 1, j) les courbes de f et de h⁻¹.
 - b) Calculer $\int_{-1}^{0} \ln \left(3 + x + \sqrt{x^2 + 10x + 9} \right) dx$

EQUATIONS DIFFERENTIELLES

I. EQUATIONS DIFFÉRENTIELLES DE TYPE : y' = ay + b

THÉORÈME

Soit a un réel non nul. L'ensemble des solutions de l'équation différentielle y' = ay est l'ensemble des fonctions définies sur IR par : $x \mapsto ke^{ax}$ où k est une constante

THÉORÈME

Soit a et b deux réels tels que a non nul. L'ensemble des solutions de l'équation différentielle y' = ay + b est l'ensemble des fonctions définies sur IR par : $x \mapsto ke^{ax} - \frac{b}{a}$ où k est une constante réelle.

CONSÉQUENCE

Soit a et b deux réels tels que a non nul. Pour tous réels x_0 et y_0 , l'équation différentielle y' = ay + b admet une unique solution qui prend la valeur y_0 en x_0 c'est la fonction f définie sur IR par : $f(x) = \left(y_0 + \frac{b}{a}\right)e^{a(x-x_0)} - \frac{b}{a}$

II. EQUATIONS DIFFÉRENTIELLES DE TYPE : y" + w²y = 0

THÉORÈME

Soit w un réel non nul. L'ensemble des solutions de l'équation différentielle $y'' + w^2 y = 0$ est l'ensemble des fonctions définies sur IR par : $f(x) = a\cos(wx) + b\sin(wx)$ où a et b sont des réels quelconques.

CONSÉQUENCES

Soit w un réel non nul et x_0 , y_0 deux réels. L'équation différentielle $y'' + w^2 y = 0$ admet une unique solution dans IR vérifiant $f(0) = x_0$ et $f'(0) = y_0$ C'est la fonction définie sur IR par :

$$f(x) = \frac{y_0}{w} \sin(wx) + x_0 \cos(wx)$$