Les intégrales - Les coniques

EXERCICE 1:

I/ Soit D une droite et F un point du plan n'appartenant pas à D. On note H le projeté orthogonal de M sur D. L'ensemble Γ des points M du plan tels que MF=(ln2).MH est :

- a) une parabole
- **b)** une hyperbole

c) une ellipse

II/ On donne dans le graphique ci-contre une ellipse E.

1) L'ellipse E admet pour équation :

a)
$$\frac{x^2}{3} + \frac{y^2}{2} = 1$$
 b) $\frac{x^2}{9} - \frac{y^2}{4} = 1$ **c)** $\frac{x^2}{9} + \frac{y^2}{4} = 1$

b)
$$\frac{x^2}{9} - \frac{y^2}{4} = 1$$

c)
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$

2) L'un des foyers de l'ellipse E est le point :

a)
$$F(0,\sqrt{5})$$

b)
$$F(\sqrt{13},0)$$

c)
$$F(\sqrt{5},0)$$

3) L'une des directrices de l'ellipse E est la droite :

a) D :
$$y = \frac{4}{\sqrt{5}}$$

b) D :
$$x = \frac{9}{\sqrt{5}}$$

b) D :
$$x = \frac{9}{\sqrt{5}}$$
 c) D : $x = \frac{4}{\sqrt{5}}$

III/1) L'hyperbole \mathcal{H} de centre O, de foyer F(5,0) et de directrice D : $x = \frac{9}{5}$ a pour équation:

a)
$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

b)
$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$
 c) $\frac{x^2}{9} - \frac{y^2}{16} = 1$

c)
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

2) La courbe d'équation $|x^2 - y^2| = 1$ est :

- a) une hyperbole
- deux hyperboles
- **b)** la réunion de **c)** la réunion d'une ellipse et d'une hyperbole

3) L'une des directrices de l'hyperbole $\mathcal{H}: -\frac{x^2}{9} + \frac{y^2}{16} = 1$ est la droite :

a) D :
$$x = \frac{9}{5}$$

b) D :
$$y = \frac{16}{5}$$
 c) D : $y = \frac{4}{5}$

c) D :
$$y = \frac{4}{5}$$

EXERCICE 2:

Le plan étant rapporté à un repère orthonormé $(O, \vec{\iota}, \vec{\jmath})$. Soit P la parabole de foyer O et de directrice D d'équation x = -2.

- 1) a) Montrer qu'une équation de P est $y^2 = 4x + 4$
 - b) Tracer la parabole P. On notera S son sommet
- 2) Soit le point $A(-2, \frac{3}{2})$.

Déterminer, par leurs équations, les deux tangentes T et T' à P issues de A dont on précisera les coordonnées de leurs points de contact. .

EXERCICE 3:

Le plan étant rapporté à un repère orthonormé $\Re = (O, \vec{\iota}, \vec{j})$. On considère la conique (\mathcal{H}) d'équation : $4x^2 - 9y^2 + 16x + 18y - 29 = 0$

- 1) Montrer que (\mathcal{H}) est une hyperbole dont on précisera le centre Ω , un foyer F, la directrice D associée à F, les sommets et les asymptotes. Tracer (\mathcal{H}) .
- 2) Etablir une équation de l'hyperbole (\mathcal{H}) rapporté à ses asymptotes.

EXERCICE 4:

Le plan étant rapporté à un repère orthonormé (O, \vec{i} , \vec{j}).

Soit (*E*) la conique dont le point $F(\sqrt{3}, 0)$ est l'un de ses foyers, le point S(2,0) est l'un de ses sommets et la droite $D: x = \frac{4}{\sqrt{3}}$ est l'une de ses directrices.

- 1) Montrer que (E) est une ellipse dont on donnera une équation cartésienne.
- 2) Montrer que la droite (T) : $x\sqrt{3} + 2y = 4$ est une tangente à (E) en un point A que l'on précisera.

EXERCICE 5:

Le plan étant rapporté à un repère orthonormé (O, \vec{t} , \vec{j}).

Dans chacun des cas suivants déterminer l'ensemble C des points M(x,y) tels que :

- a) $y = 2.t^2$ et x = t; t décrit l'ensemble $IR \setminus \{1\}$
- b) $x = 5\cos\theta$ et $y = 3\sin\theta$; θ décrit l'ensemble IR

EXERCICE 6:

Le plan étant rapporté à un repère orthonormé $(0, \vec{\iota}, \vec{j})$.

On considère l'ellipse (\mathcal{E}) d'équation : $x^2 + \frac{y^2}{4} = 1$. Soit le point $M(\cos\theta, 2\sin\theta)$, où $\theta \in \left[0, \frac{\pi}{2}\right]$.

- 1) a) Déterminer par leurs coordonnées, les sommets et les foyers de (\mathcal{E}) .
 - b) Tracer (\mathcal{E}) et placer ses foyers.
 - c) Vérifier que le point M appartient à (\mathcal{E}) .
- 2) Soit (T) la tangente à (\mathcal{E}) en M.

Montrer qu'une équation de (T) est $2x\cos\theta + y\sin\theta - 2 = 0$

- 3) On désigne par P et Q les points d'intersection de (T) et les axes du repère et on désigne par \mathcal{A} l'aire du triangle OPQ.
 - a) Montrer que $A = \frac{2}{\sin(2\theta)}$
 - b) En déduire que l'aire $\mathcal A$ est minimale si et seulement si M est le milieu de [PQ].
- 4) Soit S le solide de révolution de l'arc ABA' où A et A' sont les sommets de (\mathcal{E}) sur l'axe focal et B est celui de l'axe non focal d'ordonnée positif.
 - a) Définir la fonction f représentée par l'arc ABA' dans le repère $(0, \vec{\iota}, \vec{j})$.
 - b) Calculer alors le volume $\mathcal V$ du solide de révolution engendré par la rotation autour de l'axe $(0,\vec\iota)$ de l'arc ABA'.

EXERCICE 7:

On considère la fonction f définie sur $[0, +\infty[$ par $f(x) = \frac{1}{1+x^2}$

On pose pour tout entier n > 0, $S_n = \frac{1}{n} \sum_{k=0}^n f(k)$ et $I_n = \frac{1}{n} \int_0^n f(t) dx$

- 1) a) Vérifier que f est décroissante.
 - b) Montrer que la suite (S_n) est croissante.
- 2) Montrer que pour tout entier $n \ge 0$, $\frac{1}{1+n^2} \le I_n \le 1$
- 3) a) Montrer que pour tout entier $k \ge 0$, $f(k+1) \le \int_k^{k+1} f(t) dx \le f(k)$
 - b) Montrer alors que pour tout entier n > 0, $S_n 1 \le I_n \le S_n \frac{1}{1+n^2}$
 - c) En déduire que pour tout entier n > 0, on a : $\frac{n+1}{n(1+n^2)} \le S_n \le 2$
 - d) Dire alors pourquoi (S_n) est convergente et donner un encadrement de sa limite L.