Sujet de révision

EXERCICE N1:

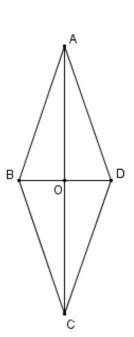
Soit f la fonction définie sur $\left] -\frac{1}{2}; \frac{1}{2} \right[par: f(x) = -tg(\pi x).$

- 1) Montrer que f réalise une bijection de $\left] -\frac{1}{2}; \frac{1}{2} \right[sur IR.$
- 2) Soit h la fonction réciproque de f. Montrer que h est dérivable sur IR et que $\forall x \in IR$, $h'(x) = \frac{-1}{\pi(1+x^2)}$.
- 3) Soit φ la fonction définie sur $[0;1[par: \varphi(x) = h(\frac{1+x}{1-x})]$.
 - a) Montrer que φ est dérivable sur [0;1] et calculer $\varphi'(x)$ pour tout $x \in [0;1]$.
 - b) En déduire que $\forall x \in [0;1[, \varphi(x) = h(x) \frac{1}{4}.$
- 4) Soit g la fonction définie sur [0;1[par : $g(x) = \varphi(x) (1+2x)h(x)$.
- a) Montrer que g est deux fois dérivable sur [0;1[et calculer g '(x) et g "(x).
- b) Etudier les variations de g ' sur [0;1 puis déduire celle de g.
- c) En déduire qu'il existe un unique réel $c \in]0;1[$ tel que $c = tg\left(\frac{\pi}{8c}\right)$.
- 5) Soient U et V les suites définies sur IN*_{1} par : $U_n = \frac{1}{n+1} \sum_{k=n}^{2n} h\left(\frac{1}{k}\right)$ et $V_n = \frac{1}{n+1} \sum_{k=n}^{2n} h\left(1 \frac{2}{1-k}\right)$.
- a) Déterminer un encadrement de U_n puis calculer $\lim_{n \to +\infty} U_n$.
- b) Montrer que $V_n = U_n \frac{1}{4}$ puis déduire $\lim_{n \to +\infty} V_n$.

EXERCICE N2:

Le plan est orienté dans le sens direct. Dans la figure ci-contre, ABCD est un losange de centre O tel que $(\overrightarrow{0A}, \overrightarrow{0B}) \equiv \frac{\pi}{2}[2\pi]$ et AC=3BD.

- 1) Soit f la similitude directe qui envoie A en B et C en D
 - a) Déterminer le rapport et l'angle de f.
 - b) Montrer que O est le centre de f.
- 2) a) Soit D' l'image de D par f. Montrer que D' est l'orthocentre du triangle ABD et que OA=90D'
 - b) Soit B'1'image de B par f. Montrer que BB'DD' est un losange.



- 3) Soit $g = f \circ S_{(AC)}$
 - a) Déterminer la nature de g.
 - b) Déterminer les images des points O, A, B, C et D par g.
 - c) Déterminer l'axe Δ de g.
 - d) La droite Δ coupe les droites (AB), (BD'), (DB') et (CD) respectivement en M, N, P et Q. Montrer que MQ=3NP

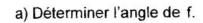
EXERCICE N3:

Le plan est orienté.

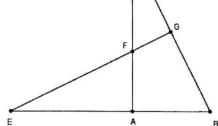
Dans la figure 1 de l'annexe jointe, ABC est un triangle direct, rectangle en A et tel que AB < AC.

La médiatrice du segment [BC] coupe les droites (AB), (AC) et (BC) respectivement en E, F et G.

1) Soit f la similitude directe de centre A et telle que f(B) = F.



- b) Montrer que l'image de la droite (BC) par f est la droite (GF).
- c) Déterminer f(C).



- 2) Le cercle & de diamètre [BC] et le cercle & de diamètre [EF] se coupent en A et H.
 - a) Montrer que f() = 2.
 - b) Soit I = f(H). Construire le point l.
 - c) Montrer que le quadrilatère HEIF est un rectangle.
 - d) La droite (FI) coupe la droite (AE) en un point J. Montrer que f(F) = J.
- 3) Soit g la similitude indirecte de centre A et telle que g(B) = F.
 - a) Montrer que $g = S_{(AC)}$ o f.
 - b) Soit E' = f(E). Montrer que E' est un point de la droite (AC).
 - c) Soit F' = g(F) et H' = g(H). Construire l'image par g du rectangle FHEI.