Lyceé sécondaire elomrane devoir de synthèse N°1 section : bac Eco 2

matière : Mathématique

Prof : M^r darwaz Le 24 / 01 / 2018 Dureé : 2h

« Le sujet comporte 4pages . la page 4 / 4 est à rendre avec la feuille de copie »

Exercice n°1: (4,5 points)

On donne les matrices E et F ci-contre : E = $\begin{pmatrix} 2 & 5 & 3 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$ et F = $\begin{pmatrix} 2 & -4 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$

- 1) a) Montrer que la matrice E est inversible
 - b) calculer E×F puis déduire la matrice inverse de E
- 2) une concessionnaire d'automobiles expose trois modèles : M_1 , M_2 et M_3 le tableau suivant indique les commandes des trois sociétés :

	modèle M ₁	modèle M 2	modèle M ₃	Prix totales en milliers de dinars	
				tunisiens	
Société 1	2	5	3	270	
Société 2	1	3	2	165	
Société 3	1	2	2	140	

- a) Traduire la situation précédente par un système
- b) Résoudre le système et déterminer en milliers de dinars tunisiens , le prix unitaire des modèles : M₁ , M₂ et M₃

Exercice n°2: (4,5points)

La matrice M =
$$\begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$
 est associé à un graphe de sommets :

A,B,C,Det E dans cet ordre.

1) Montre que le graphe G est orienté

2) a) Recopier et compléter le tableau suivant :

	Α	В	С	D	E
d ⁺					
d -					

- b) le graphe G admet il un cycle eulérien? Expliquer
- c) Vérifier que G admet une chaine eulérienne
- d) Représenter le graphe G et donner un exemple de chaine eulérienne.

3) On donne :
$$M^2 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 2 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

déterminer toutes les chaines de longueur 2 reliant le sommet B au sommet E.

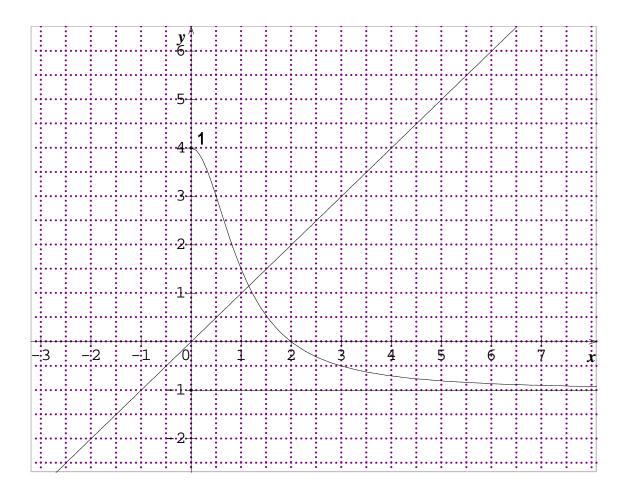
Exercice n°3:(5 points)

un responsable de magasin achète des composantes électriques auprès de deux fournisseurs dans les proportions suivantes : 35 % au premier fournisseur et 65 % au second .

La proportion de composantes défectueusc est 2 % chez le premier fournisseur

et de 3 % chez le second

Soient les évènement :


- F₁: « le composant du premier fournisseur «
- F₂: « le composant du second fournisseur «
- D : « le composant est défectueux « et \overline{D} est l'évènement contraire de D
- 1) traduire la situation par un arbre pondéré
- 2) a) Calculer $P(\overline{D}/F_1)$ et $P(D \cap F_1)$
 - b) En déduire que : p (D) = 0,0265
- sachant qu'un composant est défectueux. Quelle est la probabilité qu'il provient du premier fournisseur

Exercice n°4: (7 points)

la courbe représenté dans l'annexe d'une fonction f définie sur [0, $+\infty$ [(page 4/4)

- 1) En utilisant le graphique, déterminer:
 - a) f(0), f'_d(0) et $\lim_{x\to +\infty} f(x)$
 - b) Le tableau de variation de f
 - c) montrer que f réalise une bijection de [0, $+\infty$ [sur un intervalle J que l'on précisera
 - d) tracer (dans l'annexe) la courbe de ($\mathcal{C}_{f^{-1}}$)
- 2) On admet que : f (x) = $\frac{4-x^2}{1+x^2}$, avec x \in [0, $+\infty$ [
 - a) Vérifier que f est dérivable sur [0, $+\infty$ [et que : f'(x) = $\frac{-10 x}{(1+x^2)^2}$
 - b) Ecrire l'équation de la tangente T au point d'abscisse 2
 - c) déterminer l'expression de f⁻¹ (x), pour tout $x \in J$
- 3) Soit g la fonction définie sur $x \in [0, +\infty[$, par : g(x) = f(x) x
 - a) Montrer que g est décroissante sur [0, $+\infty$ [
 - b) En déduire que l'équation : g(x) = 0 , admet une unique solution $\alpha \in]1, \frac{3}{2}[$

Annexe : Nom & prénom :.....

