<u>ANNEX E A RENDRE</u>

Nom et prénom :.....

EXERCICE N°1 (3pts)

Cocher la réponse juste

1/Sachant que $e^{i\theta}$ est une solution de l'équation : $z^2 - 2\cos\theta z + 1 = 0$ alors l'autre solution est :

a)

- b) $ie^{i\theta}$
- c) i $\cos\theta$

2/ Les racines cubiques de $z = 4\sqrt{2} (1 + i)$ sont de la forme

a){
$$z_k = 2 e^{i\left(\frac{\pi}{12} + \frac{2k\pi}{3}\right)}$$
; $k \in \{0,1,2;3\}$ }

$$a)\{\,z_k=2\,e^{i\left(\frac{\pi}{12}+\frac{2k\pi}{3}\right)}\,;k\in\{0,1,2;3\}\}\quad\text{b)}\,\{\,z_k=2\,e^{i\left(\frac{\pi}{4}+\frac{2k\pi}{3}\right)}\,;k\in\{0,1,2\}\}\quad\text{c)}\,\{\,z_k=2\,e^{i\left(\frac{\pi}{12}+\frac{2k\pi}{3}\right)}\,;k\in\{0,1,2\}\}$$

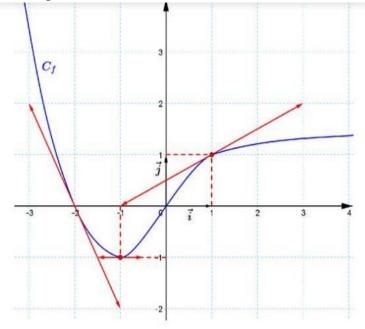
3/ Soit f la fonction dérivable sur [1;4] et pour tout $x \in [1;4]$ on $a \mid f'(x) \mid \le 4$ alors

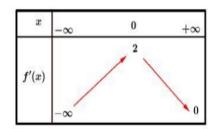
- a) $|f(4) f(1)| \le 4$ b) $|f(4) f(1)| \le 12$ c) $|f(4) f(1)| \le \frac{4}{3}$

EXERCICE N°2 (5pts)

On donne la courbe C_f représentative dans un repère orthonormé $(o; \vec{i}; \vec{j})$ d'une fonction f deux fois dérivables sur IR ainsi que le tableau de variation de la fonction f'dérivée de f.

- \triangleright C_f admet au voisinage de $(-\infty)$ une branche parabolique de direction celle de $(o;\vec{j})$
- \triangleright C_f admet au voisinage de $(+\infty)$ une branche parabolique de direction celle de $(o; \vec{t})$





Par lecture graphique

 $1/\text{ a)} \text{D\'eterminer}: f'(-1) = \cdots \quad ; f'(2) = \cdots \quad ; \lim_{x \to -\infty} \frac{f(x)}{x} = \cdots \quad ; \lim_{x \to +\infty} \frac{f(x)}{x} = \cdots ; \lim_{x \to 0} \frac{f(x)}{x} = \cdots$

et
$$(f \circ f)'(-2) = \dots = \dots = \dots$$

b) Déterminer l'équation de la tangente T à \mathcal{C}_f au point d'abscisse 1

c) Déterminer la position relative de C_f par rapport a T sur $[1; +\infty[$

.....

2/a)	Déterminer	le signe	de f" (de	érivée secon	ide de f)							
b) I	En déduire d	que C_f ad	met un p	oint d'inflex	kion dont	on pré	cisera le	s coord	onnés			
3/ So	it g la restri	ction de f	f sur [-1	; +∞[•••••	••••••	•••••	•••••	•••••	• • • • •	
a) M	Iontrer que	g realise	une bijec	tion de $[-1]$; +∞[su	r un in	itervalle	J que l'	on pré	ciser	a.	
b) M	Iontrer que			proque de g						(1)		
4/ a) M	ontrer que	pour tout	$x \in [1;$	+∞[on a :	$0 \le f'(x)$	$(z) \leq \frac{1}{2}$						
b) I	Déduire que	e pour tou	it $\alpha \in [1$; +∞[<i>on a</i> :	$f(\alpha) - 1$	$1 \le \frac{1}{2}a$	$\chi - \frac{1}{2}$					
	etrouver la 		• • • • • • • • • • • • • • • • • • • •	de <i>C_f</i> par ra _l	• • • • • • • • • • • • • • • • • • • •				••••			
				5-								
				4								
				3								
				2								
-8 -7	-6 -	5 –4	-3 -5	2 -1 0		2	3 4	5	6	7	8	
				-1								
				-2-								
				-3								
				5-								

Lycée Ibn Charaf Ennadhour	DEVOIR DE SYNTHESE N°1	Prof:BOUZID.M
Le 24/01/2018	Epreuve: MATHEMATIQUES	Classe : 4Tech ₂₋₃ Durée : 2h

EXERCICE N°3 (6pts)

Soit la fonction f définie sur] $-\infty$; 0] $par f(x) = \frac{x^2-1}{x^2+1}$ et C la courbe représentative de f dans un repère

Orthonormé $(o; \vec{i}; \vec{j})$

- $1/\text{Calculer }\lim_{x\to-\infty}f(x)$ et interpréter graphiquement le résultat
- 2/ Dresser le tableau de variation de f
- 3/ Tracer *C* (sur l'annexe à rendre)
- 4/ Montrer que f réalise une bijection de $]-\infty$; 0] sur un intervalle J que l'on précisera.
- 5/ Soit la fonction g définie sur] $-\infty$; 0] par g(x) = f(x) x
 - a) Montrer que g réalise une bijection de $]-\infty;0]$ sur un intervalle K que l'on précisera
 - b) Montrer que l'équation g(x)=0 admet une unique solution α dans $]-\infty$; 0]
 - c) Vérifier que $\alpha \in \left| \frac{-3}{5} \right|$; $-\frac{1}{2} \left| \frac{-3}{5} \right|$
 - d) En déduire la position relative de \boldsymbol{C} et la droite $\Delta : y = x$
- 6/a) f^{-1} (fonction réciproque de f) est-elle dérivable a droite en (-1) ?Justifier votre réponse.
 - b) Calculer $f\left(-\frac{1}{2}\right)$, montrer que f^{-1} est dérivable en $\left(-\frac{3}{5}\right)$ et calculer $\left(f^{-1}\right)'\left(-\frac{3}{5}\right)$
- c) Tracer C' la courbe de f^{-1} dans le même repère (on précisant sur la demi-tangente). (sur l'annexe à rendre)
 - d) Expliciter $f^{-1}(x)$ pour $x \in J$

EXERCICE Nº4 (6pts)

L'espace est muni d'un repère orthonormé $(o; \vec{i}; \vec{j}; \vec{k})$. On considère les points A(1; -2; 0); B(2; 1; 2)

- 1/a)Montrer que A, B et C déterminent un plan
 - b)Montrer que l'équation cartésienne du plan P=(ABC) est : x + y 2z + 1 = 0
 - c) Montrer que les points A ,B,C et I ne sont pas coplanaires
 - d) Calculer la distance d(I,P) du point I au plan P.
 - 2/a) Donner un système d'équations paramétriques de la droite D perpendiculaire à P et passant par I
 - b) Soit H le point d'intersection de P et D. Déterminer les coordonnées de H
 - c) Retrouver alors la distance d(I,P)
- 3/a) Déterminer l'équation cartésienne du plan Q passant par E(1;1;1) et de vecteur normal \overrightarrow{n} $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$
 - b) Calculer la distance d(I,Q) du point I au plan Q
- c)Montrer que P et Q sont perpendiculaires. Et déterminer l'équation paramétrique de la droite $\Delta = P \cap Q$
- d) En déduire la distance du point I à la droite Δ

