LYCEE METLAOUI

DEVOIR DE CONTROLE N°1 – EPREUVE : MATHEMATIQUES

SECTION: Sciences Informatiques

Classe: 4^{ème} SC.Info Prof. CHAABANE

A.S: 2017/2018 Durée: 2H

Exercice n°1: (6points)

Dans <u>la feuille annexe</u>; (\mathscr{C}_f) est la représentation graphique de la fonction $f(x) = \sqrt{x+6}$ définie sur $[-6; +\infty]$ dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

Soit (U_n) la suite définie sur $\,\mathbb{N}$ par : $\begin{cases} U_0=0\\ U_{n+1}=\sqrt{U_n+6} \end{cases}$

- 1) a/ Sans calcul, placer les points $M_0(U_0,0)$; $M_1(U_1,0)$; $M_2(U_2,0)$ et $M_3(U_3,0)$.
 - b/ Montrer que la suite (Un) est majorée par 3.
 - c/ Montrer que (U_n) est croissante.
 - d/ Déduire que (U_n) est convergente vers une limite $\,\ell\,$ que l'on déterminera.
- 2) a/ Montrer que pour tout entier n : $0 \le 3 U_{n+1} \le \frac{1}{3} \big(3 U_n \big) \, .$
 - b/ En déduire que pour tout entier n : $0 \le 3 U_n \le \left(\frac{1}{3}\right)^{n-1}$.
 - c/ Retrouver la limite ℓ de U_n.

Exercice n°2: (8points)

- 1) a/ Ecrire $(1+i)^2$ sous forme algébrique.
 - b/ Résoudre dans \mathbb{C} l'équation : $(z-1+i)^2 = 2i$.
- 2) On considère dans \mathbb{C} : $P(z) = z^3 (1-i)z^2 4(1+i)$.
 - a/ Vérifier que 2 et -2i sont deux solutions de l'équation P(z) = 0 dans \mathbb{C} .
 - b/ Déduire la troisième solution de l'équation P(z) = 0 dans \mathbb{C} .
- 3) Le plan muni d'un repère orthonormé (O, \vec{u}, \vec{v}) , on désigne par A, B et C les points d'affixes respectives 2 ; -2i ; -1 +i.
 - a/ Placer les points A, B et C.
 - b/ Soit I le milieu de [AB].

Déterminer l'affixe du point D le symétrique de C par rapport à I.

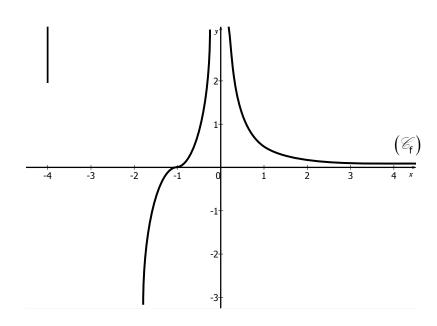
- c/ Montrer que ACBD est un losange.
- 4) a/ Calculer IC.
 - b/ Déterminer et construire l'ensemble des points M d'affixes z tel que $\left|\bar{iz}-i+1\right|=2\sqrt{2}$.

Exercice n°3: (6points)

Soit la fonction g définie par : $g(x) = \frac{1}{x+1} + \frac{1}{x}$.

On note par $\left(\mathscr{C}_{g}\right)$ sa courbe représentative dans un repère orthonormé $\left(0,\vec{i},\vec{j}\right)$.

- 1) a/ Calculer $\lim_{x\to +\infty} g(x)$ et interpréter graphiquement le résultat.
 - b/ Déterminer D_g (l'ensemble de définition de la fonction g).
 - c/ Montrer que $I\!\left(-\frac{1}{2};0\right)$ est un centre de symétrie pour $\left(\mathscr{C}_g\right)$.
- 2) Soit f une fonction définie sur $]\!-\!2;+\infty[\setminus\{0\}]$ et (\mathscr{C}_f) , sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .
 - a/ Déterminer : $\lim_{x\to 0} (g\circ f)(x)$ et $\lim_{x\to \left(-\frac{1}{2}\right)} (f\circ g)(x)$.
 - b/ Dresser le tableau de variation de la fonction f.



Nom et prénom :

Annexe de l'exercice n°1:

