Les nombres complexes (I) Limites et continuité

EXERCICE 1:

Soit f la fonction définie sur IR par : $f(x) = \begin{cases} (\sqrt{x+1} - \sqrt{x})\cos x & \text{si } x > 0 \\ x^3 + x + 1 & \text{si } x \le 0 \end{cases}$

- 1) Etudier la continuité de f en 0 puis sur IR.
- 2) a) Montrer que pour tout x > 0, on a : $f(x) = \frac{\cos x}{\sqrt{x+1} + \sqrt{x}}$
 - b) En déduire que pour tout x > 0, on a : $|f(x)| \le \frac{1}{\sqrt{x}}$
 - c) Calculer alors la limite de f en +∞. En déduire une interprétation géométrique.
- 3) a) Montrer que l'équation f(x) = -x admet une unique solution $\alpha \in]-\infty,0]$. Vérifier que $-0.5 < \alpha < -0.4$
 - b) En déduire que α est une solution dans IR de l'équation : $x^2 + 2 = -\frac{1}{x}$

EXERCICE 2:

Ecrire sous la forme exponentielle de chacun des nombres complexes suivants :

$$z_1 = i\cos\frac{\pi}{4} - \sin\frac{\pi}{4}$$
 et $z_2 = 1 + \sin\frac{\pi}{4} + i.\cos\frac{\pi}{4}$

EXERCICE 3:

Le plan complexe P est muni d'un repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$. A tout point M d'affixe $z \neq 0$, on lui associe le point M' d'affixe z' tel que : $z' = i + \frac{2}{z}$

- 1) On suppose que z = x + iy tel que $(x, y) \in IR \setminus \{(0,0)\}$
 - a) Vérifier que $z' = \frac{2x}{x^2 + y^2} + i \left(1 \frac{2y}{x^2 + y^2} \right)$
 - b) Déterminer l'ensemble des points M tel que z' soit réel.
- 2) On suppose que $z = 2e^{i\theta}$, $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2} \right]$
 - a) Déterminer l'ensemble des points M lorsque θ décrit l'intervalle $]-\frac{\pi}{2},\frac{\pi}{2}[$
 - b) Montrer que $z' = 2\cos\left(\frac{\pi}{4} + \frac{\theta}{2}\right)e^{i\left(\frac{\pi}{4} \frac{\theta}{2}\right)}$
 - c) Déterminer le module et un argument de $\,z'\,$ en fonction de $\,\theta\,$
 - d) Application : on pose $z = 1 + i\sqrt{3}$. Calculer |z'| . En déduire $\cos\left(\frac{5\pi}{12}\right)$
 - e) Déterminer θ pour laquelle M' appartient au cercle $\mathcal C$ de centre O et de rayon 1.

EXERCICE 4:

Le plan complexe étant muni d'un repère orthonormé direct (O, \vec{u} , \vec{v}).

Soit le point M d'affixe : $z = 1 + e^{i2\theta}$; $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Soit le point A d'affixe $z_A = 3 - i\sqrt{3}$ et le point I d'affixe 1.

- 1) Déterminer l'ensemble des points M quand θ varie dans $]-\frac{\pi}{2},\frac{\pi}{2}[$.
- 2) Montrer que $z = 2\cos\theta$. $e^{i\theta}$
- 3) a) Ecrire z_A sous la forme exponentielle.
 - b) Déterminer θ pour que O, A et M soit alignés.
 - c) Déterminer θ pour que OAM soit un triangle rectangle en O.

EXERCICE 5:

Dans le plan complexe muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$, on note A le point d'affixe 1 et B le point d'affixe 3 + 2i. On appelle f l'application qui, à tout point M distinct de A et d'affixe z, associe le point M' d'affixe z' définie par $z' = \frac{z - 1 + 2i}{z - 1}$

- 1. Calculer les affixes des points O' et B', images respectives des points O et B par f. Placer les points A, O', B et B' dans le plan.
- **2.** a. Pour tout nombre complexe z différent de 1, Calculer, le produit (z'-1)(z-1).
 - **b.** En déduire que, pour tout point M distinct de A, on a :

$$AM.AM' = 2$$
 et $(\overrightarrow{u}; \overrightarrow{AM}) + (\overrightarrow{u}; \overrightarrow{AM}') = \frac{\pi}{2} + 2k\pi, \qquad k \in \mathbb{Z}$

- **3.** Démontrer que, si M appartient au cercle (C) de centre A passant par O, alors M' appartient à un cercle (C'). En précisera le centre et le rayon. Construire (C) et (C').
- **4.** a. Déterminer une mesure de l'angle $(u; \overrightarrow{AB})$.
 - **b.** Démontrer que, si M est un point autre que A de la demi-droite (Δ) d'origine A, passant par B, alors M 'appartient à une demi-droite que l'on précisera.